Kartopu G, Williams B L, Zardetto V, Gürlek A K, Clayton A J, Jones S, Kessels W M M, Creatore M, Irvine S J C
Centre for Solar Energy Research, OpTIC, Swansea University, St. Asaph Business Park, LL17 0JD, UK.
Department of Applied Physics, Eindhoven University of Technology, 5600 MB, The Netherlands.
Data Brief. 2018 Dec 6;22:218-221. doi: 10.1016/j.dib.2018.12.002. eCollection 2019 Feb.
Photovoltaic enhancement of cadmium telluride (CdTe) thin film solar cells using a 50 nm thick, atomic-layer-deposited zinc oxide (ZnO) buffer film was reported in "Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer" (Kartopu et al., 2019) [1]. Data presented here are the dopant profiles of two solar cells prepared side-by-side, one with and one without the ZnO highly resistive transparent (HRT) buffer, which displayed an open-circuit potential (V) difference of 25 mV (in favor of the no-buffer device), as well as their simulated device data. The concentration of absorber dopant atoms (arsenic) was measured using the secondary ion mass spectroscopy (SIMS) method, while the density of active dopants was calculated from the capacitance-voltage (CV) measurements. The solar cell simulation data was obtained using the SCAPS software, a one-dimensional solar cell simulation programme. The presented data indicates a small loss (around 20 mV) of V for the HRT buffered cells.
《使用高电阻氧化锌缓冲层抑制前接触反射提高碲化镉太阳能电池的光电流和效率》(卡尔托普等人,2019年)[1]报道了使用50纳米厚的原子层沉积氧化锌(ZnO)缓冲膜对碲化镉(CdTe)薄膜太阳能电池进行光伏增强。此处展示的数据是并排制备的两个太阳能电池的掺杂剂分布情况,其中一个有ZnO高电阻透明(HRT)缓冲层,另一个没有,这两个电池的开路电势(V)相差25毫伏(无缓冲层的器件更有利),以及它们的模拟器件数据。吸收体掺杂原子(砷)的浓度使用二次离子质谱(SIMS)方法测量,而活性掺杂剂的密度则根据电容 - 电压(CV)测量计算得出。太阳能电池模拟数据使用SCAPS软件获得,这是一个一维太阳能电池模拟程序。所展示的数据表明,HRT缓冲电池的V值有小幅损失(约20毫伏)。