Centre for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.
J Physiol. 2020 Apr;598(7):1327-1338. doi: 10.1113/JP277083. Epub 2019 Jan 24.
Our group previously discovered and characterized the microtubule mechanotransduction pathway linking diastolic stretch to NADPH oxidase 2-derived reactive oxygen species signals that regulate calcium sparks and calcium influx pathways. Here we used focused experimental tests to constrain and expand our existing computational models of calcium signalling in heart. Mechanistic and quantitative modelling revealed new insights in disease including: changes in microtubule network density and properties, elevated NOX2 expression, altered calcium release dynamics, how NADPH oxidase 2 is activated by and responds to stretch, and finally the degree to which normalizing mechano-activated reactive oxygen species signals can prevent calcium-dependent arrhythmias.
Microtubule (MT) mechanotransduction links diastolic stretch to generation of NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS), signals we term X-ROS. While stretch-elicited X-ROS primes intracellular calcium (Ca ) channels for synchronized activation in the healthy heart, the dysregulated excess in this pathway underscores asynchronous Ca release and arrhythmia. Here, we expanded our existing computational models of Ca signalling in heart to include MT-dependent mechanotransduction through X-ROS. Informed by new focused experimental tests to properly constrain our model, we quantify the role of X-ROS on excitation-contraction coupling in healthy and pathological conditions. This approach allowed for a mechanistic investigation that revealed new insights into X-ROS signalling in disease including changes in MT network density and post-translational modifications (PTMs), elevated NOX2 expression, altered Ca release dynamics (i.e. Ca sparks and Ca waves), how NOX2 is activated by and responds to stretch, and finally the degree to which normalizing X-ROS can prevent Ca -dependent arrhythmias.
我们的研究小组先前发现并描述了将舒张拉伸与 NADPH 氧化酶 2 衍生的活性氧信号连接起来的微管机械转导途径,该信号调节钙火花和钙流入途径。在这里,我们使用集中的实验测试来约束和扩展我们现有的心脏钙信号计算模型。机理和定量建模揭示了疾病中的新见解,包括:微管网络密度和特性的变化、NOX2 表达升高、钙释放动力学改变、NADPH 氧化酶 2 如何被拉伸激活以及对拉伸的反应、以及正常化机械激活的活性氧信号可以在多大程度上预防钙依赖性心律失常。
微管(MT)机械转导将舒张拉伸与 NADPH 氧化酶 2(NOX2)依赖性活性氧(ROS)连接起来,我们将其称为 X-ROS。虽然拉伸引发的 X-ROS 使心脏健康时的细胞内钙(Ca )通道同步激活,但该途径的失调会导致 Ca 释放不同步和心律失常。在这里,我们扩展了现有的心脏钙信号计算模型,以包括通过 X-ROS 的 MT 依赖性机械转导。受新的集中实验测试的启发,这些测试适当地约束了我们的模型,我们量化了 X-ROS 在健康和病理条件下对兴奋-收缩偶联的作用。这种方法允许进行机械研究,揭示了 X-ROS 信号在疾病中的新见解,包括 MT 网络密度和翻译后修饰(PTMs)的变化、NOX2 表达升高、Ca 释放动力学(即 Ca 火花和 Ca 波)改变、NOX2 如何被拉伸激活以及对拉伸的反应、以及正常化 X-ROS 可以在多大程度上预防 Ca 依赖性心律失常。