Division of Materials Science and Engineering , Ames National Laboratory , Ames , Iowa 50011 , United States.
Nano Lett. 2019 Mar 13;19(3):1587-1594. doi: 10.1021/acs.nanolett.8b04464. Epub 2018 Dec 31.
Self-assembly is a critical process that can greatly expand the existing structures and lead to new functionality of nanoparticle systems. Multicomponent superstructures self-assembled from nanocrystals have shown promise as multifunctional materials for various applications. Despite recent progress in assembly of homogeneous nanocrystals, synthesis and self-assembly of Janus nanocrystals with contrasting surface chemistry remains a significant challenge. Herein, we designed a novel Janus nanocrystal platform to control the self-assembly of nanoparticles in aqueous solutions by balancing the hydrophobic and hydrophilic moieties. A series of superstructures have been assembled by systematically varying the Janus balance and assembly conditions. Janus Au-FeO dumbbell nanocrystals (<20 nm) were synthesized with the hydrophobic ligands coated on the Au lobe and negatively charged hydrophilic ligands coated on the FeO lobe. We systematically fine-tune the lobe size ratio, surface coating, external conditions, and even additional growth of Au nanocrystal domains on the Au lobe of dumbbell nanoparticles (Au-Au-FeO) to harvest self-assembly structures including clusters, chains, vesicles, and capsules. It was discovered that in all these assemblies the hydrophobic Au lobes preferred to stay together. In addition, these superstructures clearly demonstrated different levels of enhanced surface plasmon resonance that is directly correlated with the Au coupling in the assembly structure. The strong interparticle plasmonic coupling displayed a red-shift in surface plasmon resonance, with larger structures formed by Au-Au-FeO assembly extending into the near-infrared region. Self-assembly of Janus dumbbell nanocrystals can also be reversible under different pH values. The biphasic Janus dumbbell nanocrystals offer a platform for studying the novel interparticle coupling and open up opportunities in applications including sensing, disease diagnoses, and therapy.
自组装是一个关键的过程,可以极大地扩展现有结构并导致纳米粒子系统的新功能。由纳米晶体自组装而成的多组分超结构已被证明是具有多种功能的材料,可用于各种应用。尽管在同质纳米晶体的组装方面取得了最近的进展,但具有对比表面化学性质的 Janus 纳米晶体的合成和自组装仍然是一个重大挑战。在此,我们设计了一种新型的 Janus 纳米晶体平台,通过平衡疏水性和亲水性部分来控制纳米颗粒在水溶液中的自组装。通过系统地改变 Janus 平衡和组装条件,组装了一系列超结构。合成了具有疏水性配体涂覆在 Au 叶上和带负电荷的亲水性配体涂覆在 FeO 叶上的 Janus Au-FeO 哑铃形纳米晶体(<20nm)。我们系统地微调了叶大小比、表面涂层、外部条件,甚至在哑铃形纳米颗粒的 Au 叶上额外生长 Au 纳米晶体域(Au-Au-FeO),以收获包括簇、链、囊泡和胶囊在内的自组装结构。发现在所有这些组装体中,疏水性的 Au 叶更喜欢聚集在一起。此外,这些超结构清楚地显示出不同程度的增强表面等离子体共振,这与组装结构中的 Au 耦合直接相关。显示出强烈的颗粒间等离子体耦合的表面等离子体共振发生红移,由 Au-Au-FeO 组装形成的较大结构延伸到近红外区域。Janus 哑铃形纳米晶体的自组装在不同 pH 值下也可以是可逆的。双相 Janus 哑铃形纳米晶体为研究新型颗粒间耦合提供了一个平台,并为包括传感、疾病诊断和治疗在内的应用开辟了机会。