Suppr超能文献

准确计算侧链堆积和自由能及其在蛋白质分子动力学中的应用。

Accurate calculation of side chain packing and free energy with applications to protein molecular dynamics.

机构信息

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America.

Department of Chemistry, and The James Franck Institute, University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS Comput Biol. 2018 Dec 27;14(12):e1006342. doi: 10.1371/journal.pcbi.1006342. eCollection 2018 Dec.

Abstract

To address the large gap between time scales that can be easily reached by molecular simulations and those required to understand protein dynamics, we present a rapid self-consistent approximation of the side chain free energy at every integration step. In analogy with the adiabatic Born-Oppenheimer approximation for electronic structure, the protein backbone dynamics are simulated as preceding according to the dictates of the free energy of an instantaneously-equilibrated side chain potential. The side chain free energy is computed on the fly, allowing the protein backbone dynamics to traverse a greatly smoothed energetic landscape. This computation results in extremely rapid equilibration and sampling of the Boltzmann distribution. Our method, termed Upside, employs a reduced model involving the three backbone atoms, along with the carbonyl oxygen and amide proton, and a single (oriented) side chain bead having multiple locations reflecting the conformational diversity of the side chain's rotameric states. We also introduce a novel, maximum-likelihood method to parameterize the side chain interactions using protein structures. We demonstrate state-of-the-art accuracy for predicting χ1 rotamer states while consuming only milliseconds of CPU time. Our method enables rapidly equilibrating coarse-grained simulations that can nonetheless contain significant molecular detail. We also show that the resulting free energies of the side chains are sufficiently accurate for de novo folding of some proteins.

摘要

为了解决分子模拟可以轻松达到的时间尺度与理解蛋白质动力学所需的时间尺度之间的巨大差距,我们提出了一种快速自洽的侧链自由能近似方法,可在每个积分步骤中使用。类似于电子结构的绝热 Born-Oppenheimer 近似,我们将模拟蛋白质主链动力学,使其根据瞬时平衡侧链势的自由能要求进行模拟。侧链自由能是实时计算的,这使得蛋白质主链动力学能够穿越一个大大平滑的能量景观。这种计算导致了玻尔兹曼分布的极快速平衡和采样。我们的方法称为 Upside,采用了一种涉及三个主链原子、羰基氧和酰胺质子以及一个带有多个位置的单(定向)侧链珠的简化模型,这些位置反映了侧链构象多样性的旋转异构体状态。我们还引入了一种新颖的、基于最大似然的方法,使用蛋白质结构来参数化侧链相互作用。我们展示了预测 χ1 旋转异构体状态的最先进的准确性,而只消耗几毫秒的 CPU 时间。我们的方法能够实现快速平衡的粗粒化模拟,但仍然包含重要的分子细节。我们还表明,侧链的自由能足够准确,可以从头折叠一些蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df03/6307715/4578b55fb280/pcbi.1006342.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验