Suppr超能文献

氧化还原依赖的一氧化氮信号对血管内皮屏障完整性的调节:在创伤性和炎症性脑损伤中的意义。

Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries.

机构信息

Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.

出版信息

Nitric Oxide. 2019 Feb 1;83:51-64. doi: 10.1016/j.niox.2018.12.007. Epub 2018 Dec 24.

Abstract

Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.

摘要

一氧化氮(NO)由 eNOS 合成,在调节内皮屏障完整性方面发挥着关键作用,但目前对其潜在的细胞信号通路还不完全了解。在这里,我们报告了两种不同的依赖氧化还原的 NO 代谢物;过氧亚硝酸盐(ONOO-)与 S-亚硝基谷胱甘肽(GSNO)在导致内皮屏障破坏的细胞信号通路中发挥相反的作用。在培养的人脑血管内皮细胞(hBMVECs)中,凝血酶诱导 F-肌动蛋白应力纤维形成通过激活 eNOS 导致屏障破坏。凝血酶诱导的 eNOS 活性通过增加 ONOO-水平参与细胞信号转导(例如 RhoA 和钙内流介导的肌球蛋白轻链磷酸化),从而促进 F-肌动蛋白应力纤维形成。另一方面,凝血酶对细胞内 S-亚硝基谷胱甘肽(GSNO)的水平没有影响,GSNO 是另一种细胞内 NO 代谢物。然而,外源性 GSNO 处理可减弱凝血酶诱导的内皮屏障破坏的细胞信号通路,这表明 NO 代谢(GSNO 与 ONOO-)向 ONOO-合成的转变在内皮屏障破坏的细胞信号转导中发挥作用。与这些体外研究一致,在创伤性脑损伤和实验性自身免疫性脑脊髓炎(EAE)的动物模型中,ONOO-清除剂治疗以及 GSNO 治疗可有效减轻 BBB 渗漏、水肿形成和单核细胞向中枢神经系统的浸润。综上所述,这些数据表明,eNOS 介导的 NO 产生和随后的依赖氧化还原的 NO 代谢物(ONOO-与 GSNO)是 CNS 微血管疾病(创伤性和炎症性)病理的潜在治疗靶点。

相似文献

2
S-Nitrosoglutathione Mimics the Beneficial Activity of Endothelial Nitric Oxide Synthase-Derived Nitric Oxide in a Mouse Model of Stroke.
J Stroke Cerebrovasc Dis. 2019 Dec;28(12):104470. doi: 10.1016/j.jstrokecerebrovasdis.2019.104470. Epub 2019 Nov 1.
7
Neuroprotective properties of nitric oxide.
Ann N Y Acad Sci. 1999;890:301-11. doi: 10.1111/j.1749-6632.1999.tb08007.x.
10
STAT3 regulation by S-nitrosylation: implication for inflammatory disease.
Antioxid Redox Signal. 2014 Jun 1;20(16):2514-27. doi: 10.1089/ars.2013.5223. Epub 2014 Feb 14.

引用本文的文献

1
Salivary-Gland-Mediated Nitrate Recirculation as a Modulator for Cardiovascular Diseases.
Biomolecules. 2025 Mar 19;15(3):439. doi: 10.3390/biom15030439.
5
Molecular Dambusters: What Is Behind Hyperpermeability in Bradykinin-Mediated Angioedema?
Clin Rev Allergy Immunol. 2021 Jun;60(3):318-347. doi: 10.1007/s12016-021-08851-8. Epub 2021 Mar 16.
6
Hydroxyethylstarch revisited for acute brain injury treatment.
Neural Regen Res. 2021 Jul;16(7):1372-1376. doi: 10.4103/1673-5374.300978.
7
Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress.
J Biol Chem. 2021 Jan-Jun;296:100171. doi: 10.1074/jbc.RA120.015059. Epub 2020 Dec 14.

本文引用的文献

1
Implications of periostin in the development of subarachnoid hemorrhage-induced brain injuries.
Neural Regen Res. 2017 Dec;12(12):1982-1984. doi: 10.4103/1673-5374.221150.
2
Anticoagulation with warfarin and rivaroxaban ameliorates experimental autoimmune encephalomyelitis.
J Neuroinflammation. 2017 Jul 28;14(1):152. doi: 10.1186/s12974-017-0926-2.
3
Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease.
Circ Res. 2017 Mar 31;120(7):1174-1182. doi: 10.1161/CIRCRESAHA.117.303776.
4
RhoA S-nitrosylation as a regulatory mechanism influencing endothelial barrier function in response to G-bacterial toxins.
Biochem Pharmacol. 2017 Mar 1;127:34-45. doi: 10.1016/j.bcp.2016.12.014. Epub 2016 Dec 22.
5
GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α.
Behav Brain Res. 2018 Mar 15;340:63-70. doi: 10.1016/j.bbr.2016.10.037. Epub 2016 Oct 22.
6
Direct measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donors.
Redox Biol. 2016 Oct;9:1-14. doi: 10.1016/j.redox.2016.05.002. Epub 2016 May 16.
7
Traumatic brain injury: pathophysiology for neurocritical care.
J Intensive Care. 2016 Apr 27;4:29. doi: 10.1186/s40560-016-0138-3. eCollection 2016.
9
Targeting the nNOS/peroxynitrite/calpain system to confer neuroprotection and aid functional recovery in a mouse model of TBI.
Brain Res. 2016 Jan 1;1630:159-70. doi: 10.1016/j.brainres.2015.11.015. Epub 2015 Nov 17.
10
Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.
Free Radic Res. 2016;50(3):291-303. doi: 10.3109/10715762.2015.1118473. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验