Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
Nitric Oxide. 2019 Feb 1;83:51-64. doi: 10.1016/j.niox.2018.12.007. Epub 2018 Dec 24.
Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.
一氧化氮(NO)由 eNOS 合成,在调节内皮屏障完整性方面发挥着关键作用,但目前对其潜在的细胞信号通路还不完全了解。在这里,我们报告了两种不同的依赖氧化还原的 NO 代谢物;过氧亚硝酸盐(ONOO-)与 S-亚硝基谷胱甘肽(GSNO)在导致内皮屏障破坏的细胞信号通路中发挥相反的作用。在培养的人脑血管内皮细胞(hBMVECs)中,凝血酶诱导 F-肌动蛋白应力纤维形成通过激活 eNOS 导致屏障破坏。凝血酶诱导的 eNOS 活性通过增加 ONOO-水平参与细胞信号转导(例如 RhoA 和钙内流介导的肌球蛋白轻链磷酸化),从而促进 F-肌动蛋白应力纤维形成。另一方面,凝血酶对细胞内 S-亚硝基谷胱甘肽(GSNO)的水平没有影响,GSNO 是另一种细胞内 NO 代谢物。然而,外源性 GSNO 处理可减弱凝血酶诱导的内皮屏障破坏的细胞信号通路,这表明 NO 代谢(GSNO 与 ONOO-)向 ONOO-合成的转变在内皮屏障破坏的细胞信号转导中发挥作用。与这些体外研究一致,在创伤性脑损伤和实验性自身免疫性脑脊髓炎(EAE)的动物模型中,ONOO-清除剂治疗以及 GSNO 治疗可有效减轻 BBB 渗漏、水肿形成和单核细胞向中枢神经系统的浸润。综上所述,这些数据表明,eNOS 介导的 NO 产生和随后的依赖氧化还原的 NO 代谢物(ONOO-与 GSNO)是 CNS 微血管疾病(创伤性和炎症性)病理的潜在治疗靶点。