iMEGES:基于深度神经网络的综合精神障碍基因组评分,用于优先考虑个人基因组中精神障碍的易感性基因。

iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes.

机构信息

Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.

Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

出版信息

BMC Bioinformatics. 2018 Dec 28;19(Suppl 17):501. doi: 10.1186/s12859-018-2469-7.

Abstract

BACKGROUND

A range of rare and common genetic variants have been discovered to be potentially associated with mental diseases, but many more have not been uncovered. Powerful integrative methods are needed to systematically prioritize both variants and genes that confer susceptibility to mental diseases in personal genomes of individual patients and to facilitate the development of personalized treatment or therapeutic approaches.

METHODS

Leveraging deep neural network on the TensorFlow framework, we developed a computational tool, integrated Mental-disorder GEnome Score (iMEGES), for analyzing whole genome/exome sequencing data on personal genomes. iMEGES takes as input genetic mutations and phenotypic information from a patient with mental disorders, and outputs the rank of whole genome susceptibility variants and the prioritized disease-specific genes for mental disorders by integrating contributions from coding and non-coding variants, structural variants (SVs), known brain expression quantitative trait loci (eQTLs), and epigenetic information from PsychENCODE.

RESULTS

iMEGES was evaluated on multiple datasets of mental disorders, and it achieved improved performance than competing approaches when large training dataset is available.

CONCLUSION

iMEGES can be used in population studies to help the prioritization of novel genes or variants that might be associated with the susceptibility to mental disorders, and also on individual patients to help the identification of genes or variants related to mental diseases.

摘要

背景

已经发现了一系列罕见和常见的遗传变异,这些变异可能与精神疾病有关,但还有更多的变异尚未被发现。需要强大的综合方法来系统地优先考虑个体患者个人基因组中易患精神疾病的变异和基因,从而促进个性化治疗或治疗方法的发展。

方法

我们利用 TensorFlow 框架上的深度神经网络,开发了一种计算工具,即整合精神障碍基因组评分(iMEGES),用于分析个人基因组的全基因组/外显子测序数据。iMEGES 接收来自精神障碍患者的遗传突变和表型信息作为输入,并通过整合编码和非编码变异、结构变异(SV)、已知大脑表达数量性状基因座(eQTL)和 PsychENCODE 的表观遗传信息,输出全基因组易感性变异的排名和优先考虑的精神障碍特异性基因。

结果

iMEGES 在多个精神障碍数据集上进行了评估,当有大量训练数据集时,它的表现优于竞争方法。

结论

iMEGES 可用于群体研究,以帮助优先考虑可能与精神障碍易感性相关的新基因或变异,也可用于个体患者,以帮助识别与精神疾病相关的基因或变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc2/6309067/d097502f6bf7/12859_2018_2469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索