Suppr超能文献

基于体素分割的机载激光雷达数据三维建筑物检测算法。

Voxel segmentation-based 3D building detection algorithm for airborne LIDAR data.

机构信息

School of Geomatics, Liaoning Technical University, Fuxin, Liaoning, China.

出版信息

PLoS One. 2018 Dec 28;13(12):e0208996. doi: 10.1371/journal.pone.0208996. eCollection 2018.

Abstract

Among traditional Light Detection And Ranging (LIDAR) data representations such as raster grid, triangulated irregular network, point clouds and octree, the explicit 3D nature of voxel-based representation makes it a promising alternative. Despite the benefit of voxel-based representation, voxel-based algorithms have rarely been used for building detection. In this paper, a voxel segmentation-based 3D building detection algorithm is developed for separating building and nonbuilding voxels. The proposed algorithm first voxelizes the LIDAR point cloud into a grayscale voxel structure in which the grayscale of the voxel corresponds to the quantized mean intensity of the LIDAR points within the voxel. The voxelized dataset is segmented into multiple 3D-connected regions depending on the connectivity and grayscale similarity among voxels. The 3D-connected regions corresponding to the building roof and facade are detected sequentially according to characteristics such as their area, density, elevation difference and location. The obtained results for the detected buildings are evaluated by the LIDAR data provided by working group III/4 of ISPRS, which demonstrate a high rate of success. Average completeness, correctness, quality, and kappa coefficient indexes values of 90.0%, 96.0%, 88.1% and 88.7%, respectively, are obtained for buildings.

摘要

在传统的光探测和测距 (LIDAR) 数据表示形式(如栅格网格、不规则三角网、点云和八叉树)中,基于体素的表示形式具有明确的 3D 性质,是一种很有前途的替代方法。尽管基于体素的表示形式具有优势,但基于体素的算法很少用于建筑物检测。本文提出了一种基于体素分割的 3D 建筑物检测算法,用于分离建筑物和非建筑物体素。该算法首先将 LIDAR 点云体素化为灰度体素结构,其中体素的灰度对应于体素内 LIDAR 点的量化平均强度。根据体素之间的连通性和灰度相似性,将体素化数据集分割成多个 3D 连通区域。根据面积、密度、高程差和位置等特征,依次检测与建筑物屋顶和外墙相对应的 3D 连通区域。根据 ISPRS 工作组 III/4 提供的 LIDAR 数据对检测到的建筑物进行评估,结果表明成功率很高。建筑物的平均完整性、正确性、质量和 kappa 系数指标值分别为 90.0%、96.0%、88.1%和 88.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc6a/6310284/6c36f128376d/pone.0208996.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验