Guangzhou Metro Design & Research Institute Co., Ltd., Guangdong, Guangzhou, China.
School of Geodesy and Geomatics, Wuhan University, Wuhan, China.
PLoS One. 2023 Feb 10;18(2):e0280346. doi: 10.1371/journal.pone.0280346. eCollection 2023.
Compared with other point clouds, the airborne LiDAR point cloud has its own characteristics. The deep learning network PointNet++ ignores the inherent properties of airborne LiDAR point, and the classification precision is low. Therefore, we propose a framework based on the PointNet++ network. In this work, we proposed an interpolation method that uses adaptive elevation weight to make full use of the objects in the airborne LiDAR point, which exhibits discrepancies in elevation distributions. The class-balanced loss function is used for the uneven density distribution of point cloud data. Moreover, the relationship between a point and its neighbours is captured, densely connecting point pairs in multiscale regions and adding centroid features to learn contextual information. Experiments are conducted on the Vaihingen 3D semantic labelling benchmark dataset and GML(B) benchmark dataset. The experiments show that the proposed method, which has additional contextual information and makes full use of the airborne LiDAR point cloud properties to support classification, achieves high accuracy and can be widely used in airborne LiDAR point classification.
与其他点云相比,机载激光雷达点云有其自身的特点。深度学习网络 PointNet++忽略了机载激光雷达点的固有属性,分类精度较低。因此,我们提出了一个基于 PointNet++网络的框架。在这项工作中,我们提出了一种插值方法,该方法使用自适应高程权重充分利用机载激光雷达点中的物体,这些物体在高程分布上存在差异。类平衡损失函数用于解决点云数据密度不均匀的问题。此外,还捕获了点与其邻居之间的关系,在多尺度区域中密集连接点对,并添加质心特征来学习上下文信息。在 Vaihingen 3D 语义标注基准数据集和 GML(B)基准数据集上进行了实验。实验表明,所提出的方法具有附加的上下文信息,并且充分利用了机载激光雷达点云特性来支持分类,实现了高精度,可广泛应用于机载激光雷达点分类。