a Laboratoire de Chimie Physique des Biomolécules, Unité de Chimie Physique Théorique et Structurale (UCPTS), University of Namur , Namur , Belgium.
b Namur Institute of Structured Matter, University of Namur , Namur , Belgium.
J Biomol Struct Dyn. 2019 Sep;37(15):3923-3935. doi: 10.1080/07391102.2018.1529627. Epub 2018 Dec 28.
is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the porin Omp2a is built using the RaptorX threading method. This is a 16-stranded β-barrel with an α-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the β-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterials.
布鲁氏菌是一种致病细菌,可导致哺乳动物和人类患布鲁氏菌病。其外膜蛋白(Omp)控制溶质通过膜的扩散,因此它们在诊断和疫苗设计中起着至关重要的作用。此外,这些蛋白质最近显示出它们在基于蛋白质的生物材料中的潜力。在本研究中,使用 RaptorX 穿线方法构建了 porin Omp2a 的结构。这是一个 16 股β-桶,第三环上的α-螺旋在桶内折叠,形成通道的收缩区,这是 PhoE 和 OmpF 等一般 porin 的典型特征。在先前的研究中观察到阳离子优先于阴离子扩散,这一现象通过在细胞外环和内孔中存在不同的电荷簇得到证明。对接研究支持了先前报道的 Omp2a 促进麦芽四糖扩散能力的假说。然后将单体模型组装成同源三聚体,由涉及大多数界面相互作用的 L2 环稳定。在三个双层膜中评估三聚体的稳定性:纯 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)、纯 1-棕榈酰-2-油酰-sn-甘油-3-磷酸乙醇胺(POPE)和 1:1 的 POPC/POPE 混合物。全原子分子动力学模拟表明,β-桶结构即使在观察到呼吸样运动的情况下,也能长时间保持稳定。与纯双层膜相比,POPC/POPE 更好地保持了蛋白质及其通道的完整性。总的来说,这项工作证明了 Omp2a 模型的相关性,并将有助于设计新的治疗剂和仿生纳米材料。