Suppr超能文献

参与植物对挥发性有机化合物响应的转录调控因子。

Transcriptional regulators involved in responses to volatile organic compounds in plants.

机构信息

From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences.

the ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency (JST), and.

出版信息

J Biol Chem. 2019 Feb 15;294(7):2256-2266. doi: 10.1074/jbc.RA118.005843. Epub 2018 Dec 28.

Abstract

Field studies have shown that plants growing next to herbivore-infested plants acquire higher resistance to herbivore damage. This increased resistance is partly due to regulation of plant gene expression by volatile organic compounds (VOCs) released by plants that sense environmental challenges such as herbivores. The molecular basis for VOC sensing in plants, however, is poorly understood. Here, we report the identification of TOPLESS-like proteins (TPLs) that have VOC-binding activity and are involved in VOC sensing in tobacco. While screening for volatiles that induce stress-responsive gene expression in tobacco BY-2 cells and tobacco plants, we found that some sesquiterpenes induce the expression of stress-responsive genes. These results provided evidence that plants sense these VOCs and motivated us to analyze the mechanisms underlying volatile sensing using tobacco as a model system. Using a pulldown assay with caryophyllene derivative-linked beads, we identified TPLs as transcriptional co-repressors that bind volatile caryophyllene analogs. Overexpression of TPLs in cultured BY-2 cells or tobacco leaves reduced caryophyllene-induced gene expression, indicating that TPLs are involved in the responses to caryophyllene analogs in tobacco. We propose that unlike animals, which use membrane receptors for sensing odorants, a transcriptional co-repressor plays a role in sensing and mediating VOC signals in plant cells.

摘要

田间研究表明,生长在受食草动物侵害的植物旁边的植物会获得更高的抗食草动物损害能力。这种增强的抗性部分归因于植物对挥发性有机化合物(VOC)的基因表达调控,这些化合物是植物对环境挑战(如食草动物)的感知释放的。然而,植物对 VOC 的感知的分子基础理解甚少。在这里,我们报告了鉴定出 TOPLESS 样蛋白(TPL),它们具有 VOC 结合活性,并参与烟草中的 VOC 感知。在筛选能够诱导烟草 BY-2 细胞和烟草植物中应激响应基因表达的挥发物时,我们发现一些倍半萜烯诱导应激响应基因的表达。这些结果提供了植物感知这些 VOC 的证据,并促使我们使用烟草作为模型系统分析挥发性感知的机制。使用与石竹烯衍生物连接珠的下拉测定法,我们鉴定出 TPL 作为转录共阻遏子,它们结合挥发性石竹烯类似物。在培养的 BY-2 细胞或烟草叶片中过表达 TPL 会降低石竹烯诱导的基因表达,表明 TPL 参与烟草对石竹烯类似物的反应。我们提出,与使用膜受体感知气味的动物不同,转录共阻遏子在植物细胞中感知和介导 VOC 信号方面发挥作用。

相似文献

1
Transcriptional regulators involved in responses to volatile organic compounds in plants.
J Biol Chem. 2019 Feb 15;294(7):2256-2266. doi: 10.1074/jbc.RA118.005843. Epub 2018 Dec 28.
3
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy.
Int J Mol Sci. 2020 Nov 25;21(23):8956. doi: 10.3390/ijms21238956.
4
Using 'mute' plants to translate volatile signals.
Plant J. 2006 Jan;45(2):275-91. doi: 10.1111/j.1365-313X.2005.02623.x.
5
Catabolism of volatile organic compounds influences plant survival.
Trends Plant Sci. 2013 Dec;18(12):695-703. doi: 10.1016/j.tplants.2013.08.011. Epub 2013 Sep 20.
7
Rethinking how volatiles are released from plant cells.
Trends Plant Sci. 2015 Sep;20(9):545-50. doi: 10.1016/j.tplants.2015.06.009. Epub 2015 Jul 16.
8
A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.
Curr Opin Plant Biol. 2016 Aug;32:24-30. doi: 10.1016/j.pbi.2016.05.005. Epub 2016 Jun 6.
9
Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance.
Plant Cell Environ. 2019 Mar;42(3):959-971. doi: 10.1111/pce.13443. Epub 2018 Oct 16.

引用本文的文献

1
The TPX family of co-repressors: a hub amidst the hubbub.
Physiol Plant. 2025 Mar-Apr;177(2):e70185. doi: 10.1111/ppl.70185.
2
Structure-Function Analysis of Volatile (Z)-3-Fatty Alcohols in Tomato.
J Chem Ecol. 2025 Jan 24;51(1):6. doi: 10.1007/s10886-025-01557-7.
4
Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds.
Insects. 2024 Jul 28;15(8):572. doi: 10.3390/insects15080572.
6
Spearmint targets microtubules by (-)-carvone.
Hortic Res. 2024 May 28;11(7):uhae151. doi: 10.1093/hr/uhae151. eCollection 2024 Jul.
7
Advancing Engineered Plant Living Materials through Tobacco BY-2 Cell Growth and Transfection within Tailored Granular Hydrogel Scaffolds.
ACS Cent Sci. 2024 May 1;10(5):1094-1104. doi: 10.1021/acscentsci.4c00338. eCollection 2024 May 22.
8
Chemically Mediated Plant-Plant Interactions: Allelopathy and Allelobiosis.
Plants (Basel). 2024 Feb 24;13(5):626. doi: 10.3390/plants13050626.
9
Phytohormones in a universe of regulatory metabolites: lessons from jasmonate.
Plant Physiol. 2024 Apr 30;195(1):135-154. doi: 10.1093/plphys/kiae045.
10
Green leaf volatile sensory calcium transduction in Arabidopsis.
Nat Commun. 2023 Oct 17;14(1):6236. doi: 10.1038/s41467-023-41589-9.

本文引用的文献

1
Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.
Science. 2017 Jun 30;356(6345):1386-1388. doi: 10.1126/science.aan0826.
2
A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.
Curr Opin Plant Biol. 2016 Aug;32:24-30. doi: 10.1016/j.pbi.2016.05.005. Epub 2016 Jun 6.
3
New Insights into Orphan Nuclear Receptor SHP in Liver Cancer.
Nucl Receptor Res. 2015;2. doi: 10.11131/2015/101162. Epub 2015 Aug 18.
5
Rethinking how volatiles are released from plant cells.
Trends Plant Sci. 2015 Sep;20(9):545-50. doi: 10.1016/j.tplants.2015.06.009. Epub 2015 Jul 16.
6
Candidate Effector Proteins of the Rust Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments.
Mol Plant Microbe Interact. 2015 Jun;28(6):689-700. doi: 10.1094/MPMI-01-15-0003-R.
7
Do plants contain g protein-coupled receptors?
Plant Physiol. 2014 Jan;164(1):287-307. doi: 10.1104/pp.113.228874. Epub 2013 Nov 18.
8
Jasmonate signalling: a copycat of auxin signalling?
Plant Cell Environ. 2013 Dec;36(12):2071-84. doi: 10.1111/pce.12121. Epub 2013 May 14.
9
Investigation of the freely available easy-to-use software 'EZR' for medical statistics.
Bone Marrow Transplant. 2013 Mar;48(3):452-8. doi: 10.1038/bmt.2012.244. Epub 2012 Dec 3.
10
Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections.
Planta. 2012 Dec;236(6):1909-25. doi: 10.1007/s00425-012-1733-8. Epub 2012 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验