Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
J Mol Graph Model. 2019 Mar;87:257-267. doi: 10.1016/j.jmgm.2018.12.007. Epub 2018 Dec 13.
Study of nanostructure-protein interaction for development of various types of nano-devices is very essential. Among carbon nanostructures, carbon nanotube (CNT) provides a suitable platform for functionalization by proteins. Previous studies have confirmed that the CNT induces changes in the protein structure.
Molecular dynamics (MD) simulation study was employed to illustrate the changes occurring in the protein G (PGB) in the presence of a CNT. In order to predict the PGB surface patches for the CNT, Autodock tools were utilized.
Docking results indicate the presence of two different surface patches with diverse amino acids: the dominant polar residues in the first (PGB-CNT1) and the aromatic residues in the second (PGB-CNT2) surface patch. Displacement of amino acids in the PGB-CNT2 complex occurred during the simulation and it caused an increase in its stability at the end of simulation. The amino acids' displacements diminished the PGB α-helix structure by breakage of hydrogen bonds and generated more transient structures. Principal component analysis determined that the interaction of the CNT with the second surface patch of the PGB raised the extent and modes of the PGB motions. In contrast, insignificant structural changes induced in the PGB while the CNT bonded through the first surface patch.
Even though neither of the PGB-CNT complexes could prevent structural changes in the PGB, development of the PGB-CNT1 complex induce slight structural changes in its fragment of crystallizable receptor (FCR). Dissimilar structural changes induced in the PGB-CNT complexes are possibly related to various characteristics of the PGB binding sites.
研究纳米结构与蛋白质的相互作用对于开发各种类型的纳米器件非常重要。在碳纳米结构中,碳纳米管(CNT)为蛋白质的功能化提供了合适的平台。先前的研究已经证实,CNT 会引起蛋白质结构的变化。
采用分子动力学(MD)模拟研究来阐明 CNT 存在时蛋白质 G(PGB)中发生的变化。为了预测 PGB 与 CNT 的表面结合位点,使用 Autodock 工具。
对接结果表明存在两个具有不同氨基酸的不同表面结合位点:第一个(PGB-CNT1)的主要极性残基和第二个(PGB-CNT2)的芳香族残基。在模拟过程中,PGB-CNT2 复合物中的氨基酸发生位移,导致其在模拟结束时稳定性增加。氨基酸的位移破坏了 PGB α-螺旋结构,并产生了更多的瞬态结构。主成分分析确定,CNT 与 PGB 的第二个表面结合位点的相互作用增加了 PGB 的运动幅度和方式。相比之下,当 CNT 通过第一个表面结合位点结合时,PGB 几乎没有发生结构变化。
尽管 PGB-CNT 复合物都不能防止 PGB 发生结构变化,但 PGB-CNT1 复合物的形成会导致其可结晶受体(FCR)片段发生轻微的结构变化。PGB-CNT 复合物引起的不同结构变化可能与 PGB 结合位点的各种特性有关。