The MSK Lab-Imperial college London, South West London Elective Orthopaedic Centre, London, United Kingdom.
South West London Elective Orthopaedic Centre, Dorking road, KT18 7EG Epsom, United Kingdom.
Orthop Traumatol Surg Res. 2019 Feb;105(1):63-70. doi: 10.1016/j.otsr.2018.11.005. Epub 2018 Dec 27.
Mobile bearing unicompartmental knee arthroplasty (UKA) Oxford™ components are recommended to be systematically and mechanically aligned (MA) for restoring the constitutional lower-limb alignment. Good long-term clinical outcomes have been generated with the medially implanted MA Oxford™, but some sub-optimal biomechanical-related complications still remain. Kinematic Alignment (KA) is a personalised technique for anatomically and kinematically implanting components (total knee, fixed bearing partial knee, total hip) aimed at creating more physiological prosthetic joint biomechanics. Interestingly, for decades the principles for implanting fixed bearing UKA components were consistent with those promoted by the KA technique, but differently formulated. We initiated this computational study to assess the feasibility of this technique with the Oxford™ components, as we thought this more anatomical implantation may be clinically advantageous.
We surmised that kinematically aligning the Oxford™ medial UKA would maximise the prosthesis-bone interface through maximising the implants' size used (question 1), and alter, within an acceptable limit, the components' orientation (question 2) compared to conventional mechanical alignment.
A cohort of 40 consecutive medial osteoarthritic knee patients scheduled for UKA had a preoperative CT scan that was segmented to create 3D knee bone models. MA and KA of medial UKA Oxford components (Zimmer-Biomet, Warsaw, Indiana, USA) were simulated. Component sizing and positioning were compared between the two techniques.
We found no difference in component size, but significantly fewer occurrences of borderline fit with the KA simulation. KA technique oriented the femoral component 3.6° more valgus (from 1° varus to 7° valgus) and the tibial component 2.9° more varus (from 8° varus to 0°) compared to the MA technique. The tibial component slope in KA simulation was 6.4° posterior (from 0 to 12°) compared to a systematic 7° posterior for MA positioning.
Kinematic alignment of the medial Oxford™ generated a different, albeit still acceptable (Oxford group recommendations), implant orientation, in addition to a likely better shape-fit between components and the supportive bone cut, compared to the MA technique. The potential to improve the implants' interaction and to restore a more physiological bone loading makes the KA of Oxford™ an attractive, potentially clinically beneficial option. Clinical investigations are needed to assess its true value.
I, computational study.
为了恢复下肢固有对线,推荐对活动平台单髁膝关节置换术(Oxford UKA)的牛津假体进行系统和机械对线(MA)。内侧植入的 MA 牛津假体已取得良好的长期临床效果,但仍存在一些不理想的生物力学相关并发症。运动学对线(KA)是一种个性化技术,用于解剖学和运动学植入假体(全膝关节、固定平台部分膝关节、全髋关节),旨在创造更符合生理的人工关节生物力学。有趣的是,几十年来,植入固定平台 UKA 假体的原则与 KA 技术所提倡的原则一致,但表述方式不同。我们开展这项计算研究,旨在评估 Oxford 假体的这种技术的可行性,因为我们认为这种更解剖学的植入方式可能具有临床优势。
我们推测,活动平台内侧 UKA 的运动学对线可通过最大化假体的使用尺寸(问题 1),以及在可接受的范围内改变假体的方向(问题 2),从而最大化假体-骨界面,与传统机械对线相比。
40 例内侧骨关节炎膝关节置换术患者接受术前 CT 扫描,扫描结果进行分割,创建 3D 膝关节骨骼模型。模拟 MA 和 KA 的内侧 Oxford UKA 假体(美国印第安纳州华沙 Zimmer-Biomet)。比较两种技术的假体尺寸和位置。
我们发现,KA 模拟的组件尺寸没有差异,但边界适配的发生率显著降低。KA 技术使股骨组件外旋 3.6°(从 1° 内翻到 7° 外翻),胫骨组件内翻 2.9°(从 8° 外翻到 0°),与 MA 技术相比。KA 模拟的胫骨组件的倾斜度为 6.4° 后倾(从 0° 到 12°),而 MA 定位的系统后倾为 7°。
与 MA 技术相比,内侧 Oxford™ 的运动学对线不仅产生了不同的(尽管仍符合 Oxford 组推荐)假体方向,而且可能改善了假体与支撑骨切之间的形状适配。改善假体相互作用和恢复更符合生理的骨骼负荷的潜力使得 KA 成为一种有吸引力的、潜在有益的选择。需要进行临床研究来评估其真正的价值。
I,计算研究。