Suppr超能文献

学习分析中的隐私和数据保护应以一条教育准则为出发点——形成一项提议。

Privacy and data protection in learning analytics should be motivated by an educational maxim-towards a proposal.

作者信息

Hoel Tore, Chen Weiqin

机构信息

Oslo Metropolitan University, Postboks 4 St. Olavs plass, 0130 Oslo, Norway.

出版信息

Res Pract Technol Enhanc Learn. 2018;13(1):20. doi: 10.1186/s41039-018-0086-8. Epub 2018 Dec 11.

Abstract

Privacy and data protection are a major stumbling blocks for a data-driven educational future. Privacy policies are based on legal regulations, which in turn get their justification from political, cultural, economical and other kinds of discourses. Applied to learning analytics, do these policies also need a pedagogical grounding? This paper is based on an actual conundrum in developing a technical specification on privacy and data protection for learning analytics for an international standardisation organisation. Legal arguments vary a lot around the world, and seeking ontological arguments for privacy does not necessarily lead to a universal acclaim of safeguarding the learner meeting the new data-driven practices in education. Maybe it would be easier to build consensus around educational values, but is it possible to do so? This paper explores the legal and cultural contexts that make it a challenge to define universal principles for privacy and data protection. If not universal principles, consent could be the point of departure for assuring privacy? In education, this is not necessarily the case as consent will be balanced by organisations' legitimate interests and contract. The different justifications for privacy, the legal obligation to separate analysis from intervention, and the way learning and teaching works makes it necessary to argue data privacy from a pedagogical perspective. The paper concludes with three principles that are proposed to inform an educational maxim for privacy and data protection in learning analytics.

摘要

隐私和数据保护是数据驱动型教育未来的主要绊脚石。隐私政策基于法律法规,而法律法规又从政治、文化、经济和其他各类论述中获得其正当性依据。将这些政策应用于学习分析时,它们是否也需要教学依据呢?本文基于为一个国际标准化组织制定学习分析隐私和数据保护技术规范时遇到的一个实际难题。世界各地的法律论据差异很大,为隐私寻求本体论论据并不一定能得到对保障学习者在教育中适应新的数据驱动型做法的普遍认可。或许围绕教育价值观建立共识会更容易,但这有可能做到吗?本文探讨了使得为隐私和数据保护定义普遍原则成为一项挑战的法律和文化背景。如果不是普遍原则,同意可以成为确保隐私的出发点吗?在教育领域,情况未必如此,因为同意会与组织的合法利益和合同相权衡。隐私的不同正当理由、将分析与干预分开的法律义务以及学习和教学的运作方式使得有必要从教学角度论证数据隐私。本文最后提出了三条原则,旨在为学习分析中的隐私和数据保护制定一条教育准则提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d015/6294277/ea2eecf98bfa/41039_2018_86_Fig1_HTML.jpg

相似文献

1
Privacy and data protection in learning analytics should be motivated by an educational maxim-towards a proposal.
Res Pract Technol Enhanc Learn. 2018;13(1):20. doi: 10.1186/s41039-018-0086-8. Epub 2018 Dec 11.
3
Supporting the shift to digital with student-centered learning analytics.
Educ Technol Res Dev. 2021;69(1):357-361. doi: 10.1007/s11423-020-09882-2. Epub 2020 Nov 25.
4
Big data, privacy and COVID-19 - learning from humanitarian expertise in data protection.
J Int Humanit Action. 2020;5(1):4. doi: 10.1186/s41018-020-00072-6. Epub 2020 May 18.
6
Big data and predictive analytics in healthcare in Bangladesh: regulatory challenges.
Heliyon. 2021 May 29;7(6):e07179. doi: 10.1016/j.heliyon.2021.e07179. eCollection 2021 Jun.
7
Student Attitudes toward Learning Analytics in Higher Education: ".
Front Psychol. 2016 Dec 19;7:1959. doi: 10.3389/fpsyg.2016.01959. eCollection 2016.
9
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
10
Teaching Responsible Data Science: Charting New Pedagogical Territory.
Int J Artif Intell Educ. 2022;32(3):783-807. doi: 10.1007/s40593-021-00241-7. Epub 2021 Apr 15.

引用本文的文献

1
Task-specific information outperforms surveillance-style big data in predictive analytics.
Proc Natl Acad Sci U S A. 2021 Apr 6;118(14). doi: 10.1073/pnas.2020258118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验