Department of Statistics, Iowa State University, 2438 Osborn Dr., Ames, Iowa, USA.
Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Rd., Haidian District, Beijing, P. R. China.
Biostatistics. 2020 Oct 1;21(4):641-658. doi: 10.1093/biostatistics/kxy076.
Alzheimer's disease (AD) is a chronic neurodegenerative disease that changes the functional connectivity of the brain. The alteration of the strong connections between different brain regions is of particular interest to researchers. In this article, we use partial correlations to model the brain connectivity network and propose a data-driven procedure to recover a $c$-level partial correlation graph based on PET data, which is the graph of the absolute partial correlations larger than a pre-specified constant $c$. The proposed procedure is adaptive to the "large p, small n" scenario commonly seen in whole brain studies, and it incorporates the variation of the estimated partial correlations, which results in higher power compared to the existing methods. A case study on the FDG-PET images from AD and normal control (NC) subjects discovers new brain regions, Sup Frontal and Mid Frontal in the frontal lobe, which have different brain functional connectivity between AD and NC.
阿尔茨海默病(AD)是一种慢性神经退行性疾病,会改变大脑的功能连接。不同脑区之间强连接的改变引起了研究人员的特别关注。在本文中,我们使用偏相关来构建脑连接网络模型,并提出了一种基于 PET 数据恢复 c 级偏相关图的基于数据驱动的方法,该图是绝对偏相关大于预定常数 c 的图。所提出的方法适用于全脑研究中常见的“大 p,小 n”情况,并且它包含了估计偏相关的变化,与现有方法相比,这提高了功效。对 AD 和正常对照(NC)受试者的 FDG-PET 图像进行的案例研究发现了新的脑区,即额叶中的 Sup Frontal 和 Mid Frontal,它们在 AD 和 NC 之间具有不同的脑功能连接。