Suppr超能文献

矩阵图配对测试与脑连接性分析

Paired test of matrix graphs and brain connectivity analysis.

作者信息

Ye Yuting, Xia Yin, Li Lexin

机构信息

Department of Biostatistics and Epidemiology, University of California at Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-7360, USA.

Department of Statistics, School of Management, Fudan University, 220 Handan Rd, Wu Jiao Chang, Yangpu, Shanghai 200433, China.

出版信息

Biostatistics. 2021 Apr 10;22(2):402-420. doi: 10.1093/biostatistics/kxz037.

Abstract

Inferring brain connectivity network and quantifying the significance of interactions between brain regions are of paramount importance in neuroscience. Although there have recently emerged some tests for graph inference based on independent samples, there is no readily available solution to test the change of brain network for paired and correlated samples. In this article, we develop a paired test of matrix graphs to infer brain connectivity network when the groups of samples are correlated. The proposed test statistic is both bias corrected and variance corrected, and achieves a small estimation error rate. The subsequent multiple testing procedure built on this test statistic is guaranteed to asymptotically control the false discovery rate at the pre-specified level. Both the methodology and theory of the new test are considerably different from the two independent samples framework, owing to the strong correlations of measurements on the same subjects before and after the stimulus activity. We illustrate the efficacy of our proposal through simulations and an analysis of an Alzheimer's Disease Neuroimaging Initiative dataset.

摘要

推断脑连接网络并量化脑区之间相互作用的重要性在神经科学中至关重要。尽管最近出现了一些基于独立样本的图推断测试,但对于配对和相关样本的脑网络变化测试,尚无现成的解决方案。在本文中,当样本组相关时,我们开发了一种矩阵图配对测试来推断脑连接网络。所提出的测试统计量经过偏差校正和方差校正,并且估计误差率较小。基于此测试统计量构建的后续多重测试程序能够保证在预先指定的水平上渐近控制错误发现率。由于刺激活动前后同一受试者测量值的强相关性,新测试的方法和理论与两个独立样本框架有很大不同。我们通过模拟和对阿尔茨海默病神经影像倡议数据集的分析来说明我们提议的有效性。

相似文献

1
Paired test of matrix graphs and brain connectivity analysis.
Biostatistics. 2021 Apr 10;22(2):402-420. doi: 10.1093/biostatistics/kxz037.
2
Hypothesis testing of matrix graph model with application to brain connectivity analysis.
Biometrics. 2017 Sep;73(3):780-791. doi: 10.1111/biom.12633. Epub 2016 Dec 12.
3
Estimating c-level partial correlation graphs with application to brain imaging.
Biostatistics. 2020 Oct 1;21(4):641-658. doi: 10.1093/biostatistics/kxy076.
4
A novel approach to brain connectivity reveals early structural changes in Alzheimer's disease.
Physiol Meas. 2018 Jul 23;39(7):074005. doi: 10.1088/1361-6579/aacf1f.
5
Predicting individual brain functional connectivity using a Bayesian hierarchical model.
Neuroimage. 2017 Feb 15;147:772-787. doi: 10.1016/j.neuroimage.2016.11.048. Epub 2016 Dec 1.
7
Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease.
Biometrics. 2020 Dec;76(4):1120-1132. doi: 10.1111/biom.13235. Epub 2020 Feb 19.
9
A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
J Neurosci Methods. 2019 Apr 1;317:121-140. doi: 10.1016/j.jneumeth.2018.12.012. Epub 2018 Dec 26.
10
Testing Mediation Effects Using Logic of Boolean Matrices.
J Am Stat Assoc. 2022;117(540):2014-2027. doi: 10.1080/01621459.2021.1895177. Epub 2021 Apr 20.

本文引用的文献

1
The effect of tDCS on functional connectivity in primary progressive aphasia.
Neuroimage Clin. 2018 May 21;19:703-715. doi: 10.1016/j.nicl.2018.05.023. eCollection 2018.
2
The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline.
Brain. 2018 Jan 1;141(1):37-47. doi: 10.1093/brain/awx194.
3
Testing Differential Networks with Applications to Detecting Gene-by-Gene Interactions.
Biometrika. 2015 Jun;102(2):247-266. doi: 10.1093/biomet/asu074. Epub 2015 Mar 2.
4
Hypothesis testing of matrix graph model with application to brain connectivity analysis.
Biometrics. 2017 Sep;73(3):780-791. doi: 10.1111/biom.12633. Epub 2016 Dec 12.
6
A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs.
Neuroimage. 2016 Nov 1;141:431-441. doi: 10.1016/j.neuroimage.2016.06.042. Epub 2016 Jul 26.
8
Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.
J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504. doi: 10.1111/rssb.12123. Epub 2015 Jul 6.
10
Network Centrality of Resting-State fMRI in Primary Angle-Closure Glaucoma Before and After Surgery.
PLoS One. 2015 Oct 27;10(10):e0141389. doi: 10.1371/journal.pone.0141389. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验