Monell Chemical Senses Center, Philadelphia, PA 19104;
INSERM UMR 1024-IBENS (Institute of Biology of Ecole Normale Supérieure), Group of Applied Mathematics and Computational Biology, 75005 Paris, France
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):1053-1058. doi: 10.1073/pnas.1816371116. Epub 2018 Dec 31.
Activation of most primary sensory neurons results in transduction currents that are carried by cations. One notable exception is the vertebrate olfactory receptor neuron (ORN), where the transduction current is carried largely by the anion [Formula: see text] However, it remains unclear why ORNs use an anionic current for signal amplification. We have sought to provide clarification on this topic by studying the so far neglected dynamics of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] in the small space of olfactory cilia during an odorant response. Using computational modeling and simulations we compared the outcomes of signal amplification based on either [Formula: see text] or [Formula: see text] currents. We found that amplification produced by [Formula: see text] influx instead of a [Formula: see text] efflux is problematic for several reasons: First, the [Formula: see text] current amplitude varies greatly, depending on mucosal ion concentration changes. Second, a [Formula: see text] current leads to a large increase in the ciliary [Formula: see text] concentration during an odorant response. This increase inhibits and even reverses [Formula: see text] clearance by [Formula: see text] exchange, which is essential for response termination. Finally, a [Formula: see text] current increases the ciliary osmotic pressure, which could cause swelling to damage the cilia. By contrast, a transduction pathway based on [Formula: see text] efflux circumvents these problems and renders the odorant response robust and reliable.
大多数初级感觉神经元的激活会产生由阳离子携带的转导电流。一个值得注意的例外是脊椎动物嗅觉受体神经元(ORN),其中转导电流主要由阴离子[Formula: see text]携带。然而,为什么 ORN 使用阴离子电流来进行信号放大仍然不清楚。我们通过研究嗅觉纤毛中[Formula: see text]、[Formula: see text]、[Formula: see text]和[Formula: see text]在气味反应中小空间中的迄今为止被忽视的动力学,试图澄清这个问题。使用计算建模和模拟,我们比较了基于[Formula: see text]或[Formula: see text]电流的信号放大的结果。我们发现,[Formula: see text]内流而不是[Formula: see text]外流引起的放大存在几个问题:首先,[Formula: see text]电流幅度变化很大,取决于黏膜离子浓度的变化。其次,[Formula: see text]电流会导致在气味反应期间,纤毛[Formula: see text]浓度大幅增加。这种增加抑制甚至逆转了[Formula: see text]通过[Formula: see text]交换的清除,这对于反应终止至关重要。最后,[Formula: see text]电流会增加纤毛的渗透压,这可能导致肿胀从而损坏纤毛。相比之下,基于[Formula: see text]外流的转导途径规避了这些问题,使气味反应稳健可靠。