Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden.
Centre de Biologie pour la Gestion des Populations (CBGP), Institut National de la Recherche Agronomique (INRA), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, Univ Montpellier, 34988 France
Genetics. 2019 Mar;211(3):963-976. doi: 10.1534/genetics.118.301855. Epub 2018 Dec 31.
Many eukaryote species, including taxa such as fungi or algae, have a lifecycle with substantial haploid and diploid phases. A recent theoretical model predicts that such haploid-diploid lifecycles are stable over long evolutionary time scales when segregating deleterious mutations have stronger effects in homozygous diploids than in haploids and when they are partially recessive in heterozygous diploids. The model predicts that effective dominance-a measure that accounts for these two effects-should be close to 0.5 in these species. It also predicts that diploids should have higher fitness than haploids on average. However, an appropriate statistical framework to conjointly investigate these predictions is currently lacking. In this study, we derive a new quantitative genetic model to test these predictions using fitness data of two haploid parents and their diploid offspring, and genome-wide genetic distance between haploid parents. We apply this model to the root-rot basidiomycete fungus -a species where the heterokaryotic (equivalent to the diploid) phase is longer than the homokaryotic (haploid) phase. We measured two fitness-related traits (mycelium growth rate and the ability to degrade wood) in both homokaryons and heterokaryons, and we used whole-genome sequencing to estimate nuclear genetic distance between parents. Possibly due to a lack of power, we did not find that deleterious mutations were recessive or more deleterious when expressed during the heterokaryotic phase. Using this model to compare effective dominance among haploid-diploid species where the relative importance of the two phases varies should help better understand the evolution of haploid-diploid life cycles.
许多真核生物物种,包括真菌或藻类等类群,具有显著的单倍体和二倍体阶段的生命周期。最近的理论模型预测,当分离有害突变在纯合二倍体中比在单倍体中具有更强的影响,并且在杂合二倍体中部分隐性时,这种单倍体-二倍体生命周期在长的进化时间尺度上是稳定的。该模型预测,在这些物种中,有效显性-一种考虑这两个影响的度量-应该接近 0.5。它还预测,二倍体的平均适合度应高于单倍体。然而,目前缺乏一个适当的统计框架来联合调查这些预测。在这项研究中,我们使用两个单倍体亲本及其二倍体后代的适合度数据以及单倍体亲本之间的全基因组遗传距离,推导出一个新的数量遗传模型来检验这些预测。我们将该模型应用于根腐担子菌真菌-一种异核体(相当于二倍体)阶段比同核体(单倍体)阶段更长的物种。我们在同核体和异核体中测量了两个与适合度相关的性状(菌丝生长速度和降解木材的能力),并使用全基因组测序来估计亲本之间的核遗传距离。可能由于缺乏权力,我们没有发现有害突变在异核体阶段表达时是隐性的或更有害的。使用该模型比较具有不同两个阶段相对重要性的单倍体-二倍体物种之间的有效显性,应该有助于更好地理解单倍体-二倍体生命周期的进化。