Suppr超能文献

稀疏阵列实验性被动声纳数据的乘法和最小处理

Multiplicative and min processing of experimental passive sonar data from thinned arrays.

作者信息

Chavali Vaibhav, Wage Kathleen E, Buck John R

机构信息

Electrical and Computer Engineering Department, George Mason University, Fairfax, Virginia 22030, USA.

Electrical and Computer Engineering Department, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA.

出版信息

J Acoust Soc Am. 2018 Dec;144(6):3262. doi: 10.1121/1.5064458.

Abstract

Sparse arrays reduce the number of sensors required to achieve a specific angular resolution by using sensor spacing greater than the half-wavelength. These undersampled sparse arrays require processing algorithms to eliminate aliasing ambiguities. Thinned arrays are sparse arrays whose sensor positions lie on an underlying equally spaced grid. Using data from a shallow water passive sonar experiment, this paper investigates two thinned array geometries (coprime and nested) along with two processing algorithms (multiplicative and min). Coprime and nested arrays consist of two interleaved Uniform Line Arrays (ULAs) where one or both of the ULAs are undersampled. Multiplicative and min processors combine the outputs of the conventionally-beamformed subarrays to estimate the spatial spectrum. While these nonlinear processors can suppress aliasing, they are often plagued by high sidelobes and cross term interference. This paper presents sparse array designs for a shallow waveguide that require 33% fewer sensors than a fully-sampled ULA and provide significant sidelobe attenuation. Experimental data analysis reveals that cross term interference dominates the spectral estimates for the coprime and nested multiplicative processors and the coprime min processor. The nested min processor outperforms its sparse counterparts due to its ability to contend with coherent multipath in the environment.

摘要

稀疏阵列通过使用大于半波长的传感器间距来减少实现特定角分辨率所需的传感器数量。这些欠采样的稀疏阵列需要处理算法来消除混叠模糊性。稀疏化阵列是指传感器位置位于底层等间距网格上的稀疏阵列。利用浅水被动声纳实验的数据,本文研究了两种稀疏化阵列几何结构(互质和嵌套)以及两种处理算法(乘法和最小)。互质阵列和嵌套阵列由两个交错的均匀线阵(ULA)组成,其中一个或两个ULA是欠采样的。乘法处理器和最小处理器结合常规波束形成子阵列的输出以估计空间谱。虽然这些非线性处理器可以抑制混叠,但它们常常受到高旁瓣和交叉项干扰的困扰。本文提出了一种浅波导的稀疏阵列设计,该设计所需的传感器比全采样ULA少33%,并能显著降低旁瓣。实验数据分析表明,交叉项干扰在互质和嵌套乘法处理器以及互质最小处理器的谱估计中占主导地位。嵌套最小处理器由于能够应对环境中的相干多径而优于其稀疏对应物。

相似文献

4
Beamforming with semi-coprime arrays.基于半互质阵列的波束形成
J Acoust Soc Am. 2019 May;145(5):2841. doi: 10.1121/1.5100281.
5
Processor dependent bias of spatial spectral estimates from coprime sensor arrays.
J Acoust Soc Am. 2018 Jun;143(6):3972. doi: 10.1121/1.5042411.
7
n-tuple coprime sensor arrays.
J Acoust Soc Am. 2017 Dec;142(6):EL567. doi: 10.1121/1.5017531.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验