Instituto de Física Fundamental, CSIC, E-28006 Madrid, Spain.
Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain.
J Chem Phys. 2018 Dec 28;149(24):244304. doi: 10.1063/1.5080636.
Using our magnetically confined electron transmission apparatus, we report the results of total cross sections (TCSs) for electron scattering from dichloromethane (CHCl). The energy range of this study is 1-300 eV. Wherever possible, the present data are compared to earlier measured TCSs of Wan [J. Chem. Phys. , 1865 (1991)] and Karwasz [Phys. Rev. A , 1341 (1999)] and to the corresponding theoretical independent atom model with screening corrected additivity rule and interference term (IAM-SCAR+I) results of Krupa [Phys. Rev. A , 042702 (2018)] and a spherical complex optical potential formulation calculation of Naghma [J. Electron Spectrosc. Relat. Phenom. , 48 (2014)]. Within their respective uncertainties, the present TCS and those of Karwasz are found to be in very good agreement over their common energy range. However, agreement with the results of Wan is quite poor. The importance of the experimentally inherent 'missing angle' effect (see later) on the measured TCS is investigated and found to be significant at the lower energies studied. Indeed, when this effect is accounted for, agreement between our measured TCSs and the corrected IAM-SCAR+I+rotations calculation results are, for energies above about 3 eV, in good accord (to better than 8%). Finally, we observe two shape resonances, consistent with the earlier electron transmission spectroscopy results of Burrow [J. Chem. Phys. , 2699 (1982)], at about 2.8 eV and 4.4 eV incident electron energy, in our measured TCS.
利用我们的磁约束电子传输装置,我们报告了电子散射二氯甲烷(CHCl)的总截面(TCS)的结果。本研究的能量范围为 1-300eV。在可能的情况下,将本研究的实验数据与 Wan 之前测量的 TCS [J. Chem. Phys., 1865 (1991)]和 Karwasz [Phys. Rev. A, 1341 (1999)]进行比较,并与相应的独立原子模型理论(IAM-SCAR+I)Krupa [Phys. Rev. A, 042702 (2018)]和 Naghma 的球形复光学势计算结果 [J. Electron Spectrosc. Relat. Phenom., 48 (2014)]进行比较。在各自的不确定度范围内,在它们共同的能量范围内,本 TCS 和 Karwasz 的实验结果非常吻合。然而,与 Wan 的结果吻合度相当差。实验固有“缺失角度”效应(见后文)对测量 TCS 的重要性进行了研究,结果发现该效应在研究的较低能量下具有显著影响。事实上,当考虑到这一效应时,我们测量的 TCS 与校正后的 IAM-SCAR+I+旋转计算结果在能量高于约 3eV 时,吻合度很好(误差小于 8%)。最后,我们观察到两个形状共振,与 Burrow [J. Chem. Phys., 2699 (1982)]之前的电子透射光谱结果一致,在我们测量的 TCS 中,电子入射能量约为 2.8eV 和 4.4eV。