Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR CNRS 7351, Parc Valrose, F-06108 Nice Cedex 02, France.
CONICET and Fa.M.A.F., Universidad Nacional de Córdoba, Córdoba, Argentina.
Soft Matter. 2019 Jan 21;15(3):497-503. doi: 10.1039/c8sm01502c. Epub 2019 Jan 2.
We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v-λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.
我们研究了一种自主式圆盘系统,该系统具有跑动和翻转运动,其中粒子可以采用多种内部状态。如果携带该状态的粒子与另一个粒子保持物理接触的时间有限,则可以将该内部状态传输到另一个粒子。我们将这个过程称为反应过程,并将不同的内部状态类比为化学反应中的粒子种类。所研究的系统可能会落入吸收相,在吸收相中,由于一种粒子种类的消失,不再发生进一步的反应,或者可能会保持在活性相中,在活性相中,粒子会不断反应。通过结合个体模拟和平均场论证,我们研究了粒子种类的平衡密度对运动学参数的依赖性,特别是活性速度 v 和翻转频率 λ。我们发现,粒子种类的平衡密度表现出两个非常明显、非平凡的标度律,其中 v 和 λ 取决于系统是否处于所谓的弹道或扩散状态。我们的平均场估计导致反应速率的有效重整化,从而可以构建区分吸收相和活性相的 v-λ 相图。我们发现数值模拟和平均场估计之间有极好的一致性。这项研究是理解主动系统中进入吸收态的相变的必要步骤,并为运动元件之间的信息/信号传播提供了启示。