Suppr超能文献

结合 CoS 和 Ni:CoS 纳米线作为整体水分解的高效催化剂:实验和理论研究。

Combining CoS and Ni:CoS nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study.

机构信息

School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.

出版信息

Nanoscale. 2019 Jan 31;11(5):2202-2210. doi: 10.1039/c8nr07787h.

Abstract

In the quest for mass production of hydrogen from water electrolysis, to develop highly efficient, stable and low-cost catalysts is still the central challenge. When designing a novel catalyst, it is necessary to optimize the exposure and accessibility of its active sites as well as the reaction kinetics. This can be realized by combining an appropriate chemical composition of the material, including doping with metal elements, and a properly nanostructured morphology offering a high surface contact. We report here on the design and performances of cobalt-based oxide and sulfide nanowires as catalysts that can be used for both hydrogen and oxygen evolution reactions (denoted HER and OER respectively) in the same compatible electrolyte. Following a sulfuration process, Co3O4 nanowires are entirely converted into Co3S4 nanowires showing greatly improved OER catalytic performances with an overpotential of 283 mV (instead of 371 mV for Co3O4) to deliver a current density of 10 mA cm-2. Besides, when doping the surface of these Co3S4 nanowires with small amounts of nickel, the resulting Ni:Co3S4 nanowires exhibit an HER overpotential of 199 mV to reach 10 mA cm-2. But most importantly, two-electrode electrolyzer cells combining Co3S4 and Ni:Co3S4 electrodes show operating voltages as low as 1.70 V at 10 mA cm-2 over 40 hours, a value that competes advantageously with the best reported catalysts in 1.0 M KOH. Meanwhile, density functional theory (DFT) calculations show that the free energy of the intermediates has been reduced after the introduction of sulfur and nickel atoms, which have smaller overpotentials and corresponding enhanced electrocatalytic performance. Our results open a new avenue in the quest for overall water splitting using electrochemical systems.

摘要

在寻求通过水电解大规模生产氢气的过程中,开发高效、稳定且低成本的催化剂仍然是核心挑战。在设计新型催化剂时,有必要优化其活性位的暴露和可及性以及反应动力学。这可以通过结合材料的适当化学组成来实现,包括掺杂金属元素,以及提供高表面接触的适当纳米结构形态。我们在此报告了钴基氧化物和硫化物纳米线作为催化剂的设计和性能,这些催化剂可在同一相容电解质中用于氢和氧析出反应(分别表示为 HER 和 OER)。经过硫化处理后,Co3O4 纳米线完全转化为 Co3S4 纳米线,表现出大大改善的 OER 催化性能,其过电势为 283 mV(而 Co3O4 的过电势为 371 mV),可提供 10 mA cm-2 的电流密度。此外,当在这些 Co3S4 纳米线表面掺杂少量镍时,所得的 Ni:Co3S4 纳米线表现出 199 mV 的 HER 过电势,可达到 10 mA cm-2。但最重要的是,将 Co3S4 和 Ni:Co3S4 电极结合的两电极电解槽在 10 mA cm-2 下的工作电压低至 1.70 V,持续 40 小时,这一值与在 1.0 M KOH 中报告的最佳催化剂相竞争。同时,密度泛函理论(DFT)计算表明,引入硫和镍原子后,中间体的自由能降低,过电势较小,相应地增强了电催化性能。我们的结果为使用电化学系统进行全水分解开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验