Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland.
Bioinformatics. 2019 Aug 15;35(16):2790-2795. doi: 10.1093/bioinformatics/bty1062.
Coiled coils are protein structural domains that mediate a plethora of biological interactions, and thus their reliable annotation is crucial for studies of protein structure and function.
Here, we report DeepCoil, a new neural network-based tool for the detection of coiled-coil domains in protein sequences. In our benchmarks, DeepCoil significantly outperformed current state-of-the-art tools, such as PCOILS and Marcoil, both in the prediction of canonical and non-canonical coiled coils. Furthermore, in a scan of the human genome with DeepCoil, we detected many coiled-coil domains that remained undetected by other methods. This higher sensitivity of DeepCoil should make it a method of choice for accurate genome-wide detection of coiled-coil domains.
DeepCoil is written in Python and utilizes the Keras machine learning library. A web server is freely available at https://toolkit.tuebingen.mpg.de/#/tools/deepcoil and a standalone version can be downloaded at https://github.com/labstructbioinf/DeepCoil.
Supplementary data are available at Bioinformatics online.
卷曲螺旋是介导大量生物相互作用的蛋白质结构域,因此它们的可靠注释对于研究蛋白质结构和功能至关重要。
在这里,我们报告了 DeepCoil,这是一种新的基于神经网络的工具,用于检测蛋白质序列中的卷曲螺旋结构域。在我们的基准测试中,DeepCoil 在预测经典和非经典卷曲螺旋方面明显优于当前最先进的工具,如 PCOILS 和 Marcoil。此外,我们用 DeepCoil 对人类基因组进行扫描,检测到了许多其他方法未检测到的卷曲螺旋结构域。DeepCoil 的这种更高的敏感性使其成为准确进行全基因组卷曲螺旋结构域检测的首选方法。
DeepCoil 是用 Python 编写的,并利用了 Keras 机器学习库。一个网络服务器可在 https://toolkit.tuebingen.mpg.de/#/tools/deepcoil 上免费获得,独立版本可在 https://github.com/labstructbioinf/DeepCoil 上下载。
补充数据可在 Bioinformatics 在线获得。