Suppr超能文献

利用克罗内克技术提高压缩感知中重构信号的质量。

Increasing the quality of reconstructed signal in compressive sensing utilizing Kronecker technique.

作者信息

Zanddizari H, Rajan S, Zarrabi Houman

机构信息

University of Science and Technology, Tehran, Iran.

2Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.

出版信息

Biomed Eng Lett. 2018 Jan 31;8(2):239-247. doi: 10.1007/s13534-018-0057-4. eCollection 2018 May.

Abstract

Quality of reconstruction of signals sampled using compressive sensing (CS) algorithm depends on the compression factor and the length of the measurement. A simple method to pre-process data before reconstruction of compressively sampled signals using Kronecker technique that improves the quality of recovery is proposed. This technique reduces the mutual coherence between the projection matrix and the sparsifying basis, leading to improved reconstruction of the compressed signal. This pre-processing method changes the dimension of the sensing matrix via the Kronecker product and sparsity basis accordingly. A theoretical proof for decrease in mutual coherence using the proposed technique is also presented. The decrease of mutual coherence has been tested with different projection matrices and the proposed recovery technique has been tested on an ECG signal from MIT Arrhythmia database. Traditional CS recovery algorithms has been applied with and without the proposed technique on the ECG signal to demonstrate increase in quality of reconstruction technique using the new recovery technique. In order to reduce the computational burden for devices with limited capabilities, sensing is carried out with limited samples to obtain a measurement vector. As recovery is generally outsourced, limitations due to computations do not exist and recovery can be done using multiple measurement vectors, thereby increasing the dimension of the projection matrix via the Kronecker product. The proposed technique can be used with any CS recovery algorithm and be regarded as simple pre-processing technique during reconstruction process.

摘要

使用压缩感知(CS)算法采样的信号重建质量取决于压缩因子和测量长度。本文提出了一种在使用克罗内克技术重建压缩采样信号之前对数据进行预处理的简单方法,该方法可提高恢复质量。该技术降低了投影矩阵与稀疏基之间的互相关性,从而改善了压缩信号的重建。这种预处理方法通过克罗内克积相应地改变了传感矩阵的维度和稀疏基。本文还给出了使用该技术降低互相关性的理论证明。使用不同的投影矩阵测试了互相关性的降低情况,并在来自麻省理工学院心律失常数据库的心电图信号上测试了所提出的恢复技术。在心电图信号上应用了传统的CS恢复算法,分别使用和不使用所提出的技术,以证明使用新的恢复技术可提高重建技术的质量。为了减轻能力有限的设备的计算负担,使用有限数量的样本进行传感以获得测量向量。由于恢复通常外包进行,不存在计算方面的限制,并且可以使用多个测量向量进行恢复,从而通过克罗内克积增加投影矩阵的维度。所提出的技术可与任何CS恢复算法一起使用,并可视为重建过程中的简单预处理技术。

相似文献

2
A compressed-sensing-based compressor for ECG.一种基于压缩感知的心电图压缩器。
Biomed Eng Lett. 2020 Feb 6;10(2):299-307. doi: 10.1007/s13534-020-00148-7. eCollection 2020 May.
3
Multi-channel ECG data compression using compressed sensing in eigenspace.基于特征空间压缩感知的多通道心电图数据压缩
Comput Biol Med. 2016 Jun 1;73:24-37. doi: 10.1016/j.compbiomed.2016.03.021. Epub 2016 Mar 30.
4
Kronecker compressive sensing.克罗内克压缩感知。
IEEE Trans Image Process. 2012 Feb;21(2):494-504. doi: 10.1109/TIP.2011.2165289. Epub 2011 Aug 18.
8
Compressive sensing of sparse tensors.稀疏张量的压缩感知。
IEEE Trans Image Process. 2014 Oct;23(10):4438-47. doi: 10.1109/TIP.2014.2348796. Epub 2014 Aug 15.

引用本文的文献

1
A compressed-sensing-based compressor for ECG.一种基于压缩感知的心电图压缩器。
Biomed Eng Lett. 2020 Feb 6;10(2):299-307. doi: 10.1007/s13534-020-00148-7. eCollection 2020 May.

本文引用的文献

2
Temporal Super Resolution Enhancement of Echocardiographic Images Based on Sparse Representation.基于稀疏表示的超声心动图图像时间超分辨率增强
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):6-19. doi: 10.1109/TUFFC.2015.2493881. Epub 2015 Oct 27.
3
Kronecker compressive sensing.克罗内克压缩感知。
IEEE Trans Image Process. 2012 Feb;21(2):494-504. doi: 10.1109/TIP.2011.2165289. Epub 2011 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验