National & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
Nanoscale. 2019 Jan 17;11(3):1304-1312. doi: 10.1039/c8nr08849g.
In order to develop promising anode materials for lithium-ion batteries (LIBs), a unique nanocomposite abbreviated as G⊥FP@C-NA, in which a carbon-coated FeP nanorod array (FP@C-NA) is vertically grown on a conductive reduced graphene oxide (G) network, has been successfully prepared via a scalable strategy. Benefiting from the distinctive structure, G⊥FP@C-NA exhibits much improved conductivity, structural stability and pseudocapacitance-boosted ultrafast electrochemical kinetics for Li storage. As a result, the G⊥FP@C-NA delivers a high Li-storage capacity (1106 mA h g-1 at 50 mA g-1), outstanding rate capability (565 mA h g-1 at 5000 mA g-1) and long-term cycling stability (1009 mA h g-1 at 500 mA g-1 after 500 cycles and 310 mA h g-1 at 2000 mA g-1 after 2000 cycles) when used as an anode material for LIBs. As expected, this kind of nanoarray structure is attractive and can also be extended to other electrode materials for various energy storage systems.
为了开发有前景的锂离子电池(LIB)用阳极材料,我们通过一种可扩展的策略,成功制备了一种独特的纳米复合材料,缩写为 G⊥FP@C-NA,其中碳涂层的 FeP 纳米棒阵列(FP@C-NA)垂直生长在导电还原氧化石墨烯(G)网络上。得益于独特的结构,G⊥FP@C-NA 表现出了显著提高的导电性、结构稳定性和赝电容增强的超快电化学动力学,有利于 Li 存储。因此,G⊥FP@C-NA 提供了高的 Li 存储容量(在 50 mA g-1时为 1106 mA h g-1)、出色的倍率性能(在 5000 mA g-1时为 565 mA h g-1)和长期循环稳定性(在 500 mA g-1时经过 500 次循环后为 1009 mA h g-1,在 2000 mA g-1时经过 2000 次循环后为 310 mA h g-1),可用作 LIB 的阳极材料。不出所料,这种纳米阵列结构很有吸引力,也可以扩展到其他用于各种储能系统的电极材料。