Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , U.K.
Department of Chemistry , University of Reading , Reading RG6 6AD , U.K.
Langmuir. 2019 Jan 29;35(4):882-893. doi: 10.1021/acs.langmuir.8b03528. Epub 2019 Jan 18.
The adsorption of organic molecules on solid substrates is important to applications in fields such as catalysis, photovoltaics, corrosion inhibition, adhesion, and sensors. The molecular level description of the surface-molecule interaction and of the adsorption structures in these complex systems is crucial to understand their properties and function. Here, we present an investigation of one such system, benzotriazole (BTAH) on single-crystal Cu(111) in vacuum conditions. BTAH is the most widely used corrosion inhibitor for copper and thus a molecule of great industrial relevance. We show that the co-application of a wide range of spectroscopic techniques with theoretical methods provides unique insight in the description of the atomistic details of the adsorbed structures. Specifically, spectroscopic photoemission, absorption, and standing wave experiments combined with ab initio computational modeling allowed us to identify that benzotriazole forms overlayers of intact BTAH when deposited at low temperature, and it dissociates into BTA and H at room temperature and above. The dissociated molecule then forms complex structures of mixed chains and dimers of BTA bound to copper adatoms. Our work also reveals that copper adatoms at low concentrations, such as the theoretically predicted superstructures, cannot be resolved by means of current X-ray photoelectron spectroscopy as the modeled Cu 2p spectra are practically indistinguishable from those for a Cu surface without adatoms. Overall this study significantly deepens understanding of BTAH on Cu, a system studied for more than 50 years, and it highlights the benefits of combining spectroscopic and computational methods to obtain a complete picture of a complex adsorption system.
固体表面对有机分子的吸附在催化、光电、缓蚀、附着和传感器等领域的应用中非常重要。对于这些复杂体系中的表面-分子相互作用和吸附结构的分子水平描述,对于理解它们的性质和功能至关重要。在这里,我们研究了一个这样的体系,即在真空条件下,苯并三唑(BTAH)在单晶 Cu(111)上的吸附。BTAH 是铜最广泛使用的缓蚀剂,因此是一种具有重要工业意义的分子。我们表明,广泛的光谱技术与理论方法的共同应用为描述吸附结构的原子细节提供了独特的见解。具体来说,光谱光电子能谱、吸收和驻波实验与从头计算建模相结合,使我们能够确定苯并三唑在低温下沉积时形成完整 BTAH 的覆盖层,并且在室温及以上温度下分解为 BTA 和 H。然后,游离分子形成 BTA 与铜吸附原子结合的混合链和二聚体的复杂结构。我们的工作还表明,在低浓度下的铜吸附原子,例如理论预测的超结构,不能通过目前的 X 射线光电子能谱来分辨,因为模型化的 Cu 2p 谱与没有吸附原子的 Cu 表面的谱几乎无法区分。总的来说,这项研究大大加深了对 BTAH 在 Cu 上的吸附的理解,Cu 是一个已经研究了 50 多年的体系,它强调了结合光谱和计算方法来获得复杂吸附体系完整图像的好处。