Davidson School of Chemical Engineering , Purdue University , West lafayette , Indiana 47907 , United States.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):3917-3924. doi: 10.1021/acsami.8b18660. Epub 2019 Jan 16.
Lithium (Li) metal as a next-generation anode has received great interest from industry and academic institutes due to its attractive benefits of a high theoretical capacity (3860 mAh g) and the lowest negative potential (-3.04 V vs SHE) among the anode candidates. However, major issues associated with dendritic Li growth, infinite volume expansion of Li, and low Coulombic efficiency cause severely degraded cycle stabilities and fatal safety issues (such as short-circuit). Herein, we first designed a functional membrane, comprising an aluminum nitride (AlN) layer and a polypropylene (PP) separator, in order to curb the sharp Li dendrite growth, restrain the propagation of dendritic Li toward the PP separator, and consequently improve the electrochemical stabilities of Li metal batteries. When the designed membrane was introduced in either the Li/Cu half-cell or the Li/LCO full-cell, Li dendrite growth was significantly suppressed and side reactions associated with electrode degradation was effectively prevented by the material benefits of the AlN layer, thus leading to the significantly enhanced cycle performances. Low temperature stability tests further demonstrated the optimiztic potentiality of the designed membrane for enabling the stable operation of Li metal batteries under harsh conditions. Our approach of adopting a metal nitride layer to the PP separator can be a compelling strategy to improve the long-term electrochemical stability of the Li metal electrode.
金属锂(Li)作为下一代阳极,由于其具有高理论容量(3860 mAh g)和最低负电位(相对于标准氢电极-3.04 V)等优势,引起了工业界和学术机构的极大兴趣。然而,与枝晶 Li 生长、Li 的无限体积膨胀和低库仑效率相关的主要问题导致严重的循环稳定性下降和致命的安全问题(如短路)。在此,我们首次设计了一种功能性膜,由氮化铝(AlN)层和聚丙烯(PP)分离器组成,以抑制尖锐的 Li 枝晶生长,阻止枝晶 Li 向 PP 分离器的传播,从而提高 Li 金属电池的电化学稳定性。当将设计的膜引入 Li/Cu 半电池或 Li/LCO 全电池中时,AlN 层的材料优势显著抑制了 Li 枝晶的生长,有效阻止了与电极降解相关的副反应,从而显著提高了循环性能。低温稳定性测试进一步证明了设计膜的优化潜力,使其能够在恶劣条件下稳定运行 Li 金属电池。我们采用金属氮化物层到 PP 分离器的方法是提高 Li 金属电极长期电化学稳定性的一种有吸引力的策略。