Suppr超能文献

使用机器学习加速可拉伸石墨烯剪纸的搜索和设计。

Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning.

机构信息

Department of Physics, Boston University, Boston, Massachusetts 02215, USA.

Google Brain, Mountain View, California 94043, USA.

出版信息

Phys Rev Lett. 2018 Dec 21;121(25):255304. doi: 10.1103/PhysRevLett.121.255304.

Abstract

Making kirigami-inspired cuts into a sheet has been shown to be an effective way of designing stretchable materials with metamorphic properties where the 2D shape can transform into complex 3D shapes. However, finding the optimal solutions is not straightforward as the number of possible cutting patterns grows exponentially with system size. Here, we report on how machine learning (ML) can be used to approximate the target properties, such as yield stress and yield strain, as a function of cutting pattern. Our approach enables the rapid discovery of kirigami designs that yield extreme stretchability as verified by molecular dynamics (MD) simulations. We find that convolutional neural networks, commonly used for classification in vision tasks, can be applied for regression to achieve an accuracy close to the precision of the MD simulations. This approach can then be used to search for optimal designs that maximize elastic stretchability with only 1000 training samples in a large design space of ∼4×10^{6} candidate designs. This example demonstrates the power and potential of ML in finding optimal kirigami designs at a fraction of iterations that would be required of a purely MD or experiment-based approach, where no prior knowledge of the governing physics is known or available.

摘要

在薄片上进行折纸启发式切割已被证明是一种设计具有变形特性的可拉伸材料的有效方法,其中 2D 形状可以转变为复杂的 3D 形状。然而,找到最优解并不简单,因为可能的切割模式数量随着系统尺寸呈指数级增长。在这里,我们报告了机器学习 (ML) 如何用于逼近目标特性,例如屈服应力和屈服应变,作为切割模式的函数。我们的方法能够快速发现折纸设计,这些设计通过分子动力学 (MD) 模拟验证了极高的可拉伸性。我们发现,卷积神经网络通常用于视觉任务中的分类,也可以应用于回归,以达到接近 MD 模拟精度的准确性。然后,可以使用这种方法在一个大约有 4×10^6 个候选设计的大型设计空间中,仅用 1000 个训练样本搜索最优设计,从而最大限度地提高弹性拉伸性。这个例子展示了在没有已知或可用的控制物理知识的情况下,通过 ML 在找到最优折纸设计方面的强大功能和潜力,这是一种比纯 MD 或基于实验的方法所需的迭代次数少得多的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验