Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Ecol Lett. 2019 Mar;22(3):506-517. doi: 10.1111/ele.13210. Epub 2019 Jan 4.
Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V ), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal V can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured V dataset for C plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.
地球系统模型(ESMs)使用光合作用能力(以最大 RuBP 羧化酶活性(V )为指标)来模拟碳同化,通常依赖于经验估计,包括根据土壤肥力确定的对叶片氮的假设依赖性。相比之下,基于生化协调和光合作用羧化和水分成本的协同优化的新理论表明,最优 V 可以仅根据气候来预测,而与土壤肥力无关。在这里,我们发展了这一理论,并发现它可以解释 64%的 C 植物全球实地测量 V 数据集的可观察变异性。土壤肥力指数解释的变化要小得多(32%)。这些结果表明,环境调节的生物物理限制和光可用性是全球光合作用能力的首要驱动因素。通过驯化和适应,植物在叶片水平上有效地利用资源,从而最大限度地提高生长和繁殖的潜在资源利用效率。我们的理论为 ESM 中动态预测光合作用能力提供了一种稳健的策略。