Suppr超能文献

光声显微镜揭示了神经鞘氨醇 1-磷酸诱导的对缺血性中风的神经保护作用的血液动力学基础。

Photoacoustic microscopy reveals the hemodynamic basis of sphingosine 1-phosphate-induced neuroprotection against ischemic stroke.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.

Department of Anesthesiology, University of Virginia, Charlottesville, USA.

出版信息

Theranostics. 2018 Nov 29;8(22):6111-6120. doi: 10.7150/thno.29435. eCollection 2018.

Abstract

Emerging evidence has suggested that sphingosine 1-phosphate (S1P), a bioactive metabolite of sphingolipids, may play an important role in the pathophysiological processes of cerebral hypoxia and ischemia. However, the influence of S1P on cerebral hemodynamics and metabolism remains unclear. Uniquely capable of high-resolution, label-free, and comprehensive imaging of hemodynamics and oxygen metabolism in the mouse brain without the influence of general anesthesia, our newly developed head-restrained multi-parametric photoacoustic microscopy (PAM) is well suited for this mechanistic study. Here, combining the cutting-edge PAM and a selective inhibitor of sphingosine kinase 2 (SphK2) that can increase the blood S1P level, we investigated the role of S1P in cerebral oxygen supply-demand and its neuroprotective effects on global brain hypoxia induced by nitrogen gas inhalation and focal brain ischemia induced by transient middle cerebral artery occlusion (tMCAO). Inhibition of SphK2, which increased the blood S1P, resulted in the elevation of both arterial and venous sO in the hypoxic mouse brain, while the cerebral blood flow remained unchanged. As a result, it gradually and significantly reduced the metabolic rate of oxygen. Furthermore, pre-treatment of the mice subject to tMCAO with the SphK2 inhibitor led to decreased infarct volume, improved motor function, and reduced neurological deficit, compared to the control treatment with a less potent R-enantiomer. In contrast, post-treatment with the inhibitor showed no improvement in the stroke outcomes. The failure for the post-treatment to induce neuroprotection was likely due to the relatively slow hemodynamic responses to the SphK2 inhibitor-evoked S1P intervention, which did not take effect before the brain injury was induced. Our results reveal that elevated blood S1P significantly changes cerebral hemodynamics and oxygen metabolism under hypoxia but not normoxia. The improved blood oxygenation and reduced oxygen demand in the hypoxic brain may underlie the neuroprotective effect of S1P against ischemic stroke.

摘要

新出现的证据表明,鞘氨醇 1-磷酸(S1P)是鞘脂类的生物活性代谢物,可能在脑缺氧和缺血的病理生理过程中发挥重要作用。然而,S1P 对脑血流动力学和代谢的影响尚不清楚。我们新开发的头固定式多参数光声显微镜(PAM)具有独特的能力,可以在不影响全身麻醉的情况下对小鼠大脑的血流动力学和氧代谢进行高分辨率、无标记和全面成像,非常适合这项机制研究。在这里,我们结合最先进的 PAM 和一种选择性的鞘氨醇激酶 2(SphK2)抑制剂,该抑制剂可以增加血液中的 S1P 水平,研究了 S1P 在脑氧供需中的作用,以及其对氮气吸入诱导的全脑缺氧和短暂性大脑中动脉闭塞(tMCAO)诱导的局灶性脑缺血的神经保护作用。抑制 SphK2 会增加血液中的 S1P,导致缺氧小鼠大脑中的动脉和静脉血氧饱和度升高,而脑血流保持不变。结果,它逐渐显著降低了氧的代谢率。此外,与用作用较弱的 R-对映体的对照处理相比,在用 SphK2 抑制剂预处理 tMCAO 的小鼠中,梗塞体积减小,运动功能改善,神经功能缺损减少。相比之下,抑制剂的后期治疗对中风结果没有改善。后期治疗未能诱导神经保护的原因可能是 SphK2 抑制剂诱发的 S1P 干预的血流动力学反应相对较慢,在诱导脑损伤之前没有起效。我们的研究结果表明,在缺氧下,升高的血液 S1P 会显著改变脑血流动力学和氧代谢,但在正常氧合下则不会。缺氧大脑中血氧的改善和氧需求的减少可能是 S1P 对缺血性中风的神经保护作用的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e60/6299683/30159d49da79/thnov08p6111g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验