de Anda-Jáuregui Guillermo, Guo Kai, McGregor Brett A, Feldman Eva L, Hur Junguk
Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
Present address: Computational Genomics Division, Instituto Nacional de Medicina Genómica, 14610, Ciudad de México, Ciudad de México, Mexico.
BMC Syst Biol. 2019 Jan 7;13(1):1. doi: 10.1186/s12918-018-0674-7.
Aggregation of high-throughput biological data using pathway-based approaches is useful to associate molecular results to functional features related to the studied phenomenon. Biological pathways communicate with one another through the crosstalk phenomenon, forming large networks of interacting processes.
In this work, we present the pathway crosstalk perturbation network (PXPN) model, a novel model used to analyze and integrate pathway perturbation data based on graph theory. With this model, the changes in activity and communication between pathways observed in transitions between physiological states are represented as networks. The model presented here is agnostic to the type of biological data and pathway definition used and can be implemented to analyze any type of high-throughput perturbation experiments. We present a case study in which we use our proposed model to analyze a gene expression dataset derived from experiments in a BKS-db/db mouse model of type 2 diabetes mellitus-associated neuropathy (DN) and the effects of the drug pioglitazone in this condition. The networks generated describe the profile of pathway perturbation involved in the transitions between the healthy and the pathological state and the pharmacologically treated pathology. We identify changes in the connectivity of perturbed pathways associated to each biological transition, such as rewiring between extracellular matrix, neuronal system, and G-protein coupled receptor signaling pathways.
The PXPN model is a novel, flexible method used to integrate high-throughput data derived from perturbation experiments; it is agnostic to the type of data and enrichment function used, and it is applicable to a wide range of biological phenomena of interest.
使用基于通路的方法整合高通量生物学数据,有助于将分子结果与所研究现象的功能特征相关联。生物通路通过串扰现象相互通信,形成相互作用过程的大型网络。
在本研究中,我们提出了通路串扰扰动网络(PXPN)模型,这是一种基于图论用于分析和整合通路扰动数据的新型模型。利用该模型,在生理状态转变过程中观察到的通路活性和通信变化被表示为网络。这里提出的模型与所使用的生物学数据类型和通路定义无关,可用于分析任何类型的高通量扰动实验。我们展示了一个案例研究,其中我们使用所提出的模型分析了来自2型糖尿病相关神经病变(DN)的BKS-db/db小鼠模型实验的基因表达数据集,以及药物吡格列酮在此种情况下的作用。所生成的网络描述了健康状态与病理状态之间以及药物治疗的病理状态之间转变过程中涉及的通路扰动概况。我们确定了与每个生物学转变相关的扰动通路连接性的变化,例如细胞外基质、神经系统和G蛋白偶联受体信号通路之间的重新布线。
PXPN模型是一种用于整合来自扰动实验的高通量数据的新型灵活方法;它与所使用的数据类型和富集功能无关,适用于广泛的感兴趣的生物学现象。