Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
cBio Center, Dana-Farber Cancer Institute, Boston, MA, USA.
Adv Exp Med Biol. 2018;1105:153-169. doi: 10.1007/978-981-13-2200-6_10.
While 3D structure determination of small (<15 kDa) proteins by solution NMR is largely automated and routine, structural analysis of larger proteins is more challenging. An emerging hybrid strategy for modeling protein structures combines sparse NMR data that can be obtained for larger proteins with sequence co-variation data, called evolutionary couplings (ECs), obtained from multiple sequence alignments of protein families. This hybrid "EC-NMR" method can be used to accurately model larger (15-60 kDa) proteins, and more rapidly determine structures of smaller (5-15 kDa) proteins using only backbone NMR data. The resulting structures have accuracies relative to reference structures comparable to those obtained with full backbone and sidechain NMR resonance assignments. The requirement that evolutionary couplings (ECs) are consistent with NMR data recorded on a specific member of a protein family, under specific conditions, potentially also allows identification of ECs that reflect alternative allosteric or excited states of the protein structure.
虽然通过溶液 NMR 确定小分子(<15 kDa)蛋白质的 3D 结构在很大程度上是自动化和常规的,但较大蛋白质的结构分析更具挑战性。一种新兴的蛋白质结构建模混合策略结合了可用于较大蛋白质的稀疏 NMR 数据和来自蛋白质家族的多个序列比对获得的序列协变数据,称为进化耦合 (EC)。这种混合的“EC-NMR”方法可用于准确建模较大的(15-60 kDa)蛋白质,并仅使用 backbone NMR 数据更快速地确定较小的(5-15 kDa)蛋白质的结构。与使用完整的 backbone 和侧链 NMR 共振分配获得的结构相比,所得到的结构的准确性与参考结构相当。在特定条件下,进化耦合 (EC) 与在蛋白质家族的特定成员上记录的 NMR 数据一致的要求,还可能允许识别反映蛋白质结构的替代变构或激发态的 EC。