RIKEN R-CCS, Kobe, Hyōgo, Japan.
Department of Physics and ITbM, Nagoya University, Nagoya, Japan.
Adv Exp Med Biol. 2018;1105:199-217. doi: 10.1007/978-981-13-2200-6_13.
Hybrid approaches for the modeling of macromolecular complexes that combine computational molecular mechanics simulations with experimental data are discussed. Experimental data for biological molecular structures are often low-resolution, and thus, do not contain enough information to determine the atomic positions of molecules. This is especially true when the dynamics of large macromolecules are the focus of the study. However, computational modeling can complement missing information. Significant increase in computational power, as well as the development of new modeling algorithms allow us to model structures of biological macromolecules reliably, using experimental data as references. We review the basics of molecular mechanics approaches, such as atomic model force field, and coarse-grained models, molecular dynamics simulation and normal mode analysis and describe how they could be used for flexible fitting hybrid modeling with experimental data, especially from cryo-EM and SAXS.
本文讨论了将计算分子力学模拟与实验数据相结合的大分子复合物建模的混合方法。生物分子结构的实验数据通常分辨率较低,因此,不足以确定分子的原子位置。当研究的焦点是大分子的动力学时,情况尤其如此。然而,计算建模可以补充缺失的信息。计算能力的显著提高以及新建模算法的发展使我们能够使用实验数据作为参考可靠地模拟生物大分子的结构。我们回顾了分子力学方法的基础知识,例如原子模型力场和粗粒模型、分子动力学模拟和正则模态分析,并描述了它们如何用于与实验数据(尤其是来自冷冻电镜和小角 X 射线散射)的柔性拟合混合建模。