Suppr超能文献

用于磁共振成像中头部运动的带稀疏变化的实时滤波

Real-Time Filtering with Sparse Variations for Head Motion in Magnetic Resonance Imaging.

作者信息

Weller Daniel S, Noll Douglas C, Fessler Jeffrey A

机构信息

University of Virginia, Charlottesville, VA, USA 22904.

University of Michigan, Ann Arbor, MI, USA 48109.

出版信息

Signal Processing. 2019 Apr;157:170-179. doi: 10.1016/j.sigpro.2018.12.001. Epub 2018 Dec 3.

Abstract

Estimating a time-varying signal, such as head motion from magnetic resonance imaging data, becomes particularly challenging in the face of other temporal dynamics such as functional activation. This paper describes a new Kalman filter-like framework that includes a sparse residual term in the measurement model. This additional term allows the extended Kalman filter to generate real-time motion estimates suitable for prospective motion correction when such dynamics occur. An iterative augmented Lagrangian algorithm similar to the alterating direction method of multipliers implements the update step for this Kalman filter. This paper evaluates the accuracy and convergence rate of this iterative method for small and large motion in terms of its sensitivity to parameter selection. The included experiment on a simulated functional magnetic resonance imaging acquisition demonstrates that the resulting method improves the maximum Youden's J index of the time series analysis by 2-3% versus retrospective motion correction, while the sensitivity index increases from 4.3 to 5.4 when combining prospective and retrospective correction.

摘要

从磁共振成像数据中估计随时间变化的信号,如头部运动,在面对其他时间动态变化(如功能激活)时变得特别具有挑战性。本文描述了一种类似卡尔曼滤波器的新框架,该框架在测量模型中包含一个稀疏残差项。当出现此类动态变化时,这个附加项允许扩展卡尔曼滤波器生成适合前瞻性运动校正的实时运动估计。一种类似于乘子交替方向法的迭代增广拉格朗日算法实现了此卡尔曼滤波器的更新步骤。本文根据该迭代方法对参数选择的敏感性,评估了其在小运动和大运动情况下的准确性和收敛速度。所包含的关于模拟功能磁共振成像采集的实验表明,与回顾性运动校正相比,所得方法将时间序列分析的最大约登指数提高了2 - 3%,而在结合前瞻性和回顾性校正时,敏感性指数从4.3提高到了5.4。

相似文献

1
Real-Time Filtering with Sparse Variations for Head Motion in Magnetic Resonance Imaging.
Signal Processing. 2019 Apr;157:170-179. doi: 10.1016/j.sigpro.2018.12.001. Epub 2018 Dec 3.
2
Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
Neuroimage. 2019 Oct 15;200:159-173. doi: 10.1016/j.neuroimage.2019.06.042. Epub 2019 Jun 19.
3
Incremental activation detection for real-time fMRI series using robust Kalman filter.
Comput Math Methods Med. 2014;2014:759805. doi: 10.1155/2014/759805. Epub 2014 Jan 6.
4
Kalman filtering for real-time navigator processing.
Magn Reson Med. 2008 Jul;60(1):158-68. doi: 10.1002/mrm.21649.
5
Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering.
Biomed Eng Online. 2010 Mar 9;9:16. doi: 10.1186/1475-925X-9-16.
6
Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.
IEEE Trans Med Imaging. 2012 Mar;31(3):533-42. doi: 10.1109/TMI.2011.2171772. Epub 2011 Oct 13.
7
Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets.
Med Image Anal. 2009 Aug;13(4):564-79. doi: 10.1016/j.media.2009.05.008. Epub 2009 Jun 12.

本文引用的文献

1
ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA).
SIAM J Optim. 2018;28(1):223-250. doi: 10.1137/16M108940X. Epub 2018 Jan 30.
2
Parameter Estimation of Nonlinear Systems by Dynamic Cuckoo Search.
Neural Comput. 2017 Apr;29(4):1103-1123. doi: 10.1162/NECO_a_00946. Epub 2017 Feb 9.
3
Prospective motion correction in functional MRI.
Neuroimage. 2017 Jul 1;154:33-42. doi: 10.1016/j.neuroimage.2016.11.014. Epub 2016 Nov 11.
4
A survey of medical image registration - under review.
Med Image Anal. 2016 Oct;33:140-144. doi: 10.1016/j.media.2016.06.030. Epub 2016 Jun 21.
5
Advances and challenges in deformable image registration: From image fusion to complex motion modelling.
Med Image Anal. 2016 Oct;33:145-148. doi: 10.1016/j.media.2016.06.031. Epub 2016 Jun 21.
6
Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain.
PLoS One. 2016 May 9;11(5):e0154974. doi: 10.1371/journal.pone.0154974. eCollection 2016.
7
Motion correction in MRI of the brain.
Phys Med Biol. 2016 Mar 7;61(5):R32-56. doi: 10.1088/0031-9155/61/5/R32. Epub 2016 Feb 11.
8
Head Motion and Correction Methods in Resting-state Functional MRI.
Magn Reson Med Sci. 2016;15(2):178-86. doi: 10.2463/mrms.rev.2015-0060. Epub 2015 Dec 22.
9
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction.
PLoS One. 2015 Jul 30;10(7):e0133921. doi: 10.1371/journal.pone.0133921. eCollection 2015.
10
An evaluation of prospective motion correction (PMC) for high resolution quantitative MRI.
Front Neurosci. 2015 Mar 25;9:97. doi: 10.3389/fnins.2015.00097. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验