Weller Daniel S, Noll Douglas C, Fessler Jeffrey A
University of Virginia, Charlottesville, VA, USA 22904.
University of Michigan, Ann Arbor, MI, USA 48109.
Signal Processing. 2019 Apr;157:170-179. doi: 10.1016/j.sigpro.2018.12.001. Epub 2018 Dec 3.
Estimating a time-varying signal, such as head motion from magnetic resonance imaging data, becomes particularly challenging in the face of other temporal dynamics such as functional activation. This paper describes a new Kalman filter-like framework that includes a sparse residual term in the measurement model. This additional term allows the extended Kalman filter to generate real-time motion estimates suitable for prospective motion correction when such dynamics occur. An iterative augmented Lagrangian algorithm similar to the alterating direction method of multipliers implements the update step for this Kalman filter. This paper evaluates the accuracy and convergence rate of this iterative method for small and large motion in terms of its sensitivity to parameter selection. The included experiment on a simulated functional magnetic resonance imaging acquisition demonstrates that the resulting method improves the maximum Youden's J index of the time series analysis by 2-3% versus retrospective motion correction, while the sensitivity index increases from 4.3 to 5.4 when combining prospective and retrospective correction.
从磁共振成像数据中估计随时间变化的信号,如头部运动,在面对其他时间动态变化(如功能激活)时变得特别具有挑战性。本文描述了一种类似卡尔曼滤波器的新框架,该框架在测量模型中包含一个稀疏残差项。当出现此类动态变化时,这个附加项允许扩展卡尔曼滤波器生成适合前瞻性运动校正的实时运动估计。一种类似于乘子交替方向法的迭代增广拉格朗日算法实现了此卡尔曼滤波器的更新步骤。本文根据该迭代方法对参数选择的敏感性,评估了其在小运动和大运动情况下的准确性和收敛速度。所包含的关于模拟功能磁共振成像采集的实验表明,与回顾性运动校正相比,所得方法将时间序列分析的最大约登指数提高了2 - 3%,而在结合前瞻性和回顾性校正时,敏感性指数从4.3提高到了5.4。