Chemical Engineering Department, Faculty of Engineering , Ardakan University , Ardakan 89518-95491 , Iran.
Department of Mechanical Engineering , University of Utah , Salt Lake City , Utah 84112 , United States.
J Phys Chem B. 2019 Jan 31;123(4):787-791. doi: 10.1021/acs.jpcb.8b10710. Epub 2019 Jan 22.
In this paper, we report a unique property of inactivating Gram-positive/negative bacteria in the dark via apatite-covered Ag/AgBr/TiO nanocomposites (AAAT). We demonstrate that the inactivation mechanism is bacteriostatic based on the cellular integrity and motility of bacteria, low toxicity and high durability of AAAT. From straight observations, the catalytic loading affects the bacterial replication and cell envelope as well as inducing an anomaly in bacterial motility (continuous rotation) for both types of bacteria. Both simulation and experimental analyses suggest that the anomaly could be due to posterior intracellular signals rather than purely mechanical effects (e.g., size enlargement and motility retardation). Provoked by chemomechanical stimuli, these signals increase the frequency of flagellar tumbling and eventually entangle the bacteria.
在本文中,我们通过磷灰石覆盖的 Ag/AgBr/TiO 纳米复合材料(AAAT)报道了一种独特的在黑暗中灭活革兰氏阳性/阴性细菌的特性。我们证明了基于细菌的细胞完整性和运动性、AAAT 的低毒性和高耐久性,失活机制是抑菌的。从直观观察来看,催化负载会影响细菌的复制和细胞包膜,并导致两种类型细菌的运动异常(连续旋转)。模拟和实验分析都表明,这种异常可能是由于细胞内信号而不是纯粹的机械效应(例如,尺寸增大和运动迟缓)引起的。这些信号受到化学机械刺激的激发,增加了鞭毛旋转的频率,最终使细菌缠绕在一起。