GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
Beijing Institute of Tracking and Telecommunications Technology, No. 26 Beiqing Road, Beijing 100094, China.
Sensors (Basel). 2019 Jan 7;19(1):198. doi: 10.3390/s19010198.
Currently, the Global Navigation Satellite System (GNSS) mainly uses the satellites in Medium Earth Orbit (MEO) to provide position, navigation, and timing (PNT) service. The weak navigation signals limit its usage in deep attenuation environments, and make it easy to interference and counterfeit by jammers or spoofers. Moreover, being far away to the Earth results in relatively slow motion of the satellites in the sky and geometric change, making long time needed for achieved centimeter positioning accuracy. By using the satellites in Lower Earth Orbit (LEO) as the navigation satellites, these disadvantages can be addressed. In this contribution, the advantages of navigation from LEO constellation has been investigated and analyzed theoretically. The space segment of global Chinese BeiDou Navigation Satellite System consisting of three GEO, three IGSO, and 24 MEO satellites has been simulated with a LEO constellation with 120 satellites in 10 orbit planes with inclination of 55 degrees in a nearly circular orbit (eccentricity about 0.000001) at an approximate altitude of 975 km. With simulated data, the performance of LEO constellation to augment the global Chinese BeiDou Navigation Satellite System (BeiDou-3) has been assessed, as one of the example to show the promising of using LEO as navigation system. The results demonstrate that the satellite visibility and position dilution of precision have been significantly improved, particularly in mid-latitude region of Asia-Pacific region, once the LEO data were combined with BeiDou-3 for navigation. Most importantly, the convergence time for Precise Point Positioning (PPP) can be shorted from about 30 min to 1 min, which is essential and promising for real-time PPP application. Considering there are a plenty of commercial LEO communication constellation with hundreds or thousands of satellites, navigation from LEO will be an economic and promising way to change the heavily relay on GNSS systems.
目前,全球导航卫星系统(GNSS)主要使用中地球轨道(MEO)中的卫星提供位置、导航和定时(PNT)服务。由于卫星导航信号较弱,限制了其在深度衰减环境中的应用,并容易受到干扰和欺骗。此外,由于离地球较远,卫星在天空中的运动速度相对较慢,几何形状发生变化,这使得实现厘米级定位精度需要较长的时间。通过使用低地球轨道(LEO)中的卫星作为导航卫星,可以解决这些问题。本文从理论上探讨和分析了利用 LEO 星座进行导航的优势。利用全球北斗导航卫星系统的三个地球静止轨道(GEO)、三个倾斜地球同步轨道(IGSO)和 24 个中地球轨道(MEO)卫星组成的空间段,模拟了一个由 120 颗卫星组成的 LEO 星座,该星座位于 10 个轨道平面内,轨道倾角为 55 度,近圆轨道(偏心率约为 0.000001),轨道高度约为 975 公里。利用模拟数据,评估了 LEO 星座对全球北斗导航卫星系统(北斗三号)的增强性能,这是一个利用 LEO 作为导航系统的示例,展示了其应用的潜力。结果表明,卫星可见性和位置精度稀释度得到了显著提高,特别是在亚太地区中纬度地区,一旦将 LEO 数据与北斗三号结合用于导航。最重要的是,精密单点定位(PPP)的收敛时间可以从大约 30 分钟缩短到 1 分钟,这对于实时 PPP 应用是至关重要的。考虑到有成千上万颗卫星的大量商业 LEO 通信星座,利用 LEO 进行导航将是一种经济且有前途的方式,可以改变对 GNSS 系统的严重依赖。