Suppr超能文献

Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae.

作者信息

Arnold W, Rump A, Klipp W, Priefer U B, Pühler A

机构信息

Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany.

出版信息

J Mol Biol. 1988 Oct 5;203(3):715-38. doi: 10.1016/0022-2836(88)90205-7.

Abstract

The complete nucleotide sequence (24,206 base-pairs) of the Klebsiella pneumoniae gene region for nitrogen fixation (nif) is presented. Coding regions corresponding to the 19 known nif genes (including nifW and nifZ) could be identified. An additional open reading frame of 216 base-pairs, called nifT, was detected between nifK and nifY. Search for transcriptional signal structures revealed some unusual features: (1) several possible NifA-binding motifs are present in the intergenic regions between nifJ and nifH as well as between nifX and nifU; (2) a perfect NifA-binding motif, preceding the nifENX promoter, is located within an inverted repeat structure; (3) structures resembling the consensus nif promoter are found within the coding regions of nifW and nifZ and, together with a NifA-binding motif, in nifN. Typical rho-independent termination structures were detected only downstream from the nifHDKTY and the nifBQ operons. Analysis of the deduced amino acid sequences revealed the presence of two Cys-X2-Cys-X2-Cys-X3-Cys-Pro clusters in the pyruvate-flavodoxin oxidoreductase NifJ. This arrangement of cysteine residues is normally present only in ferredoxins. A high degree of homology between the two gene products (NifE and NifN) involved in iron-molybdenum cofactor biosynthesis and the two nitrogenase component I structural proteins (NifD and NifK) was found. All four proteins are characterized by the conserved motif His-Gly-X2-Gly-Cys, which may play a role in binding the iron-molybdenum cofactor.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验