Suppr超能文献

用于健康监测的呼吸传感器。

Breath Sensors for Health Monitoring.

机构信息

Particle Technology Laboratory, Department of Mechanical and Process Engineering , ETH Zurich , CH-8092 Zurich , Switzerland.

Department of Endocrinology, Diabetes, and Clinical Nutrition , University Hospital Zurich , CH-8091 Zurich , Switzerland.

出版信息

ACS Sens. 2019 Feb 22;4(2):268-280. doi: 10.1021/acssensors.8b00937. Epub 2019 Jan 29.

Abstract

Breath sensors can revolutionize medical diagnostics by on-demand detection and monitoring of health parameters in a noninvasive and personalized fashion. Despite extensive research for more than two decades, however, only a few breath sensors have been translated into clinical practice. Actually, most never even left the scientific laboratories. Here, we describe key challenges that currently impede realization of breath sensors and highlight strategies to overcome them. Specifically, we start with breath marker selection (with emphasis on metabolic and inflammatory markers) and breath sampling. Next, the sensitivity, stability, and selectivity requirements for breath sensors are described. Concepts are elaborated to systematically address these requirements by material design (focusing on chemoresistive metal oxides), orthogonal arrays, and filters. Finally, aspects of portable device integration, user communication, and clinical applicability are discussed.

摘要

呼吸传感器可以通过按需检测和非侵入性、个性化的方式监测健康参数,从而彻底改变医学诊断。然而,尽管已经进行了二十多年的广泛研究,但只有少数呼吸传感器被转化为临床实践。实际上,大多数呼吸传感器甚至从未离开过科学实验室。在这里,我们描述了当前阻碍呼吸传感器实现的关键挑战,并强调了克服这些挑战的策略。具体来说,我们从呼吸标志物的选择(重点是代谢和炎症标志物)和呼吸采样开始。接下来,描述了呼吸传感器的灵敏度、稳定性和选择性要求。通过材料设计(专注于电阻式金属氧化物)、正交数组和滤波器,阐述了用于系统地解决这些要求的概念。最后,讨论了便携式设备集成、用户通信和临床适用性的方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验