Suppr超能文献

钾离子通道 TASK1 影响少突胶质细胞分化,但不影响髓鞘修复。

The K -channel TASK1 affects Oligodendroglial differentiation but not myelin restoration.

机构信息

Institute of Neuropathology, University Hospital Münster, Münster, Germany.

Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.

出版信息

Glia. 2019 May;67(5):870-883. doi: 10.1002/glia.23577. Epub 2019 Jan 9.

Abstract

In multiple sclerosis, demyelination occurs as a consequence of chronic autoimmunity in the central nervous system causing progressive neurological impairment in patients. After a demyelinating event, new myelin sheaths are formed by adult oligodendroglial progenitor cells; a process called remyelination. However, remyelination often fails in multiple sclerosis due to insufficient recruitment and differentiation of oligodendroglial precursor cells. A pivotal role for the two-pore-domain potassium (K ) channel, TASK1, has already been proven for an animal model of multiple sclerosis. However, the mechanisms underlying the TASK1-mediated effects are still elusive. Here, we tested the role of TASK1 channels in oligodendroglial differentiation and remyelination after cuprizone-induced demyelination in male mice. We found TASK1 channels to be functionally expressed on primary murine and human, pluripotent stem cell-derived oligodendrocytes. Lack of TASK1 channels resulted in an increase of mature oligodendrocytes in vitro as well as a higher number of mature oligodendrocytes and accelerated developmental myelination in vivo. Mechanistically, Task1-deficient cells revealed a higher amount of phosphorylated WNK1, a kinase known to be involved in the downstream signaling of the myelination regulator LINGO-1. Furthermore, we analyzed the effect of genetic TASK1 ablation or pharmacological TASK1 inhibition on disease-related remyelination. Neither channel inhibition nor lack of TASK1 channels promoted remyelination after pathological demyelination. In summary, we conclude that functional TASK1 channels participate in the modulation of differentiating oligodendroglial cells in a previously unknown manner. However, while being involved in developmental myelination our data suggest that TASK1 channels have no major effect on remyelination.

摘要

在多发性硬化症中,脱髓鞘是中枢神经系统慢性自身免疫的结果,导致患者进行性神经功能障碍。在脱髓鞘事件后,新的髓鞘鞘由成体少突胶质前体细胞形成;这一过程称为髓鞘再生。然而,多发性硬化症中的髓鞘再生常常失败,这是由于少突胶质前体细胞的募集和分化不足。双孔钾 (K) 通道 TASK1 已被证明在多发性硬化症的动物模型中具有关键作用。然而,TASK1 介导的作用的机制仍然难以捉摸。在这里,我们在雄性小鼠的 Cuprizone 诱导脱髓鞘后,测试了 TASK1 通道在少突胶质细胞分化和髓鞘再生中的作用。我们发现 TASK1 通道在原代鼠和人多能干细胞衍生的少突胶质细胞上功能性表达。缺乏 TASK1 通道导致体外成熟少突胶质细胞增加,体内成熟少突胶质细胞数量增加和发育性髓鞘形成加速。从机制上讲,缺乏 TASK1 的细胞显示出更多的磷酸化 WNK1,WNK1 激酶已知参与髓鞘调节因子 LINGO-1 的下游信号转导。此外,我们分析了遗传 TASK1 缺失或药理学 TASK1 抑制对疾病相关髓鞘再生的影响。通道抑制或缺乏 TASK1 通道均不能促进病理性脱髓鞘后的髓鞘再生。总之,我们的结论是,功能性 TASK1 通道以一种未知的方式参与调节分化中的少突胶质细胞。然而,尽管参与了发育性髓鞘形成,我们的数据表明 TASK1 通道对髓鞘再生没有重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验