Suppr超能文献

极端限制设计作为一种在药物流行病学研究中减少混杂偏倚的方法。

Extreme restriction design as a method for reducing confounding by indication in pharmacoepidemiologic research.

机构信息

Centre for Clinical Epidemiology, Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Canada.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.

出版信息

Pharmacoepidemiol Drug Saf. 2020 Jan;29 Suppl 1:26-34. doi: 10.1002/pds.4708. Epub 2019 Jan 9.

Abstract

PURPOSE

Confounding by indication is a concern in observational pharmacoepidemiologic studies, including those that use active comparator, new user (ACNU) designs. Here, we present a method of restriction to an indication, which we call "extreme restriction," to reduce confounding in such studies.

METHODS

As a case study, we evaluated the effect of proton pump inhibitors (PPIs) on hospitalization for community-acquired pneumonia (HCAP). PPI use has been associated with increased HCAP risk, but this association likely results from confounding by indication due to gastroesophageal reflux disease (GERD). Using the UK's Clinical Practice Research Datalink, we compared the risk of HCAP within 180 days between PPI users and histamine-2 receptor antagonist (H2RA) users in an ACNU cohort using Cox proportional hazard models with a time-fixed exposure definition adjusted for high-dimensional propensity score deciles. We then performed the same analysis on an "extremely-restricted" cohort of incident nonsteroidal anti-inflammatory drug (NSAID) users, some of whom received PPIs for prophylaxis. Because PPIs were given as prophylaxis in this population, confounding due to GERD should be limited. We compared effect estimates between ACNU and restricted cohorts to evaluate confounding in both analyses.

RESULTS

In the ACNU cohort, PPIs were associated with an increased risk of HCAP (hazard ratio [HR]: 1.25; 95% confidence interval [CI]: 1.05, 1.47), but this association was not present in the restricted cohort (HR: 1.06; 95% CI: 0.75, 1.49).

CONCLUSIONS

Restriction to a single indication for treatment may reduce confounding by indication in studies conducted in distributed data networks and other large databases.

摘要

目的

在观察性药物流行病学研究中,包括使用活性对照物(ACNU)设计的研究,混杂因素会导致指示性偏倚。在这里,我们提出了一种限制指示的方法,我们称之为“极端限制”,以减少此类研究中的混杂因素。

方法

作为一个案例研究,我们评估了质子泵抑制剂(PPIs)对社区获得性肺炎(HCAP)住院的影响。PPIs 的使用与 HCAP 风险增加有关,但这种关联可能是由于胃食管反流病(GERD)引起的指示性混杂因素所致。使用英国临床实践研究数据链接,我们在 ACNU 队列中使用 Cox 比例风险模型比较了 PPI 使用者和组胺 2 受体拮抗剂(H2RA)使用者在 180 天内 HCAP 的风险,该模型具有时间固定的暴露定义,并根据高维倾向评分十分位数进行调整。然后,我们在一个“极端受限”的非甾体抗炎药(NSAID)新使用者队列中进行了相同的分析,其中一些人使用 PPI 进行预防。由于在该人群中 PPI 用于预防,因此 GERD 引起的混杂因素应该是有限的。我们比较了 ACNU 和受限队列之间的效应估计值,以评估两种分析中的混杂因素。

结果

在 ACNU 队列中,PPIs 与 HCAP 风险增加相关(风险比 [HR]:1.25;95%置信区间 [CI]:1.05,1.47),但在受限队列中则没有这种关联(HR:1.06;95% CI:0.75,1.49)。

结论

在分布式数据网络和其他大型数据库中进行的研究中,限制治疗的单一适应症可能会减少指示性偏倚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验