Suppr超能文献

高发光铜(i)卤化物配合物与四齿配体(PNNP)螯合:合成、结构、光物理性质和理论研究。

Highly luminescent copper(i) halide complexes chelated with a tetradentate ligand (PNNP): synthesis, structure, photophysical properties and theoretical studies.

机构信息

Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

出版信息

Dalton Trans. 2019 Jan 22;48(4):1418-1426. doi: 10.1039/c8dt03452d.

Abstract

Two emissive copper(i) halide complexes (PNNP)Cu2Br2 (1) and (PNNP)Cu2I2 (2), which are constructed from butterfly-shaped dinuclear Cu2X2 cores and a new tetradentate ligand (PNNP = 1,3-bis(1-(2-(diphenylphosphanyl)phenyl)-1H-pyrazol-3-yl)benzene), were synthesized and characterized. These chelates exhibit bright green (λmax = 517 nm, 1) and bluish-green (λmax = 492 nm, 2) photoluminescence in the solid state with quantum yields of 42% (1) and 58% (2), and lifetimes of 13 μs (1) and 8.8 μs (2) at room temperature. Computational density functional theory/time-dependent density functional theory (DFT/TDDFT) calculations were performed to elucidate the nature of their electronic transitions and to predict their detailed photophysical properties. The results of DFT/TDDFT calculations, combined with the temperature dependence of spectroscopic properties and emission decay behaviors, suggest that the emission in the solid state originates from the 1,3(MLCT + XLCT + ILCT) excited states, which are in thermal equilibrium with small energy differences of about 0.1 eV. A comparative study of the titled complexes reveals that the emissive-state characteristics and photophysical properties of these complexes are significantly affected by the ligand field strength and atomic number of the halogen atom, as well as by the percentage of the XLCT transition involved in the lowest excited states. Compared with its bromide counterpart (1), the iodide complex (2) shows a much higher phosphorescence quantum yield (0.94 vs. 0.50), a much shorter phosphorescence decay time (58 μs vs. 274 μs), a much larger phosphorescence rate constant (1.6 × 104 s-1vs. 1.8 × 103 s-1), and a larger phosphorescence contribution (25% vs. 8%) in room-temperature emission, due to the more efficient spin-orbit coupling (SOC).

摘要

两种发光铜(I)卤化物配合物(PNNP)Cu2Br2(1)和(PNNP)Cu2I2(2),它们由蝶形双核 Cu2X2 核和一种新的四齿配体(PNNP=1,3-双(1-(2-(二苯基膦基)苯基)-1H-吡唑-3-基)苯)构建而成。这些螯合物在固态下表现出明亮的绿色(λmax=517nm,1)和蓝绿色(λmax=492nm,2)光致发光,量子产率分别为 42%(1)和 58%(2),室温下的寿命分别为 13μs(1)和 8.8μs(2)。进行了计算密度泛函理论/时间相关密度泛函理论(DFT/TDDFT)计算,以阐明它们的电子跃迁性质,并预测其详细的光物理性质。DFT/TDDFT 计算的结果,结合光谱性质和发射衰减行为的温度依赖性,表明固态发射源自 1,3(MLCT+XLCT+ILCT)激发态,它们与约 0.1eV 的小能量差处于热平衡状态。对标题配合物的比较研究表明,这些配合物的发光态特性和光物理性质受配体场强度和卤素原子原子数以及参与最低激发态的 XLCT 跃迁的百分比的显著影响。与溴化物对应物(1)相比,碘化物配合物(2)显示出更高的磷光量子产率(0.94 对 0.50)、更短的磷光衰减时间(58μs 对 274μs)、更大的磷光速率常数(1.6×104s-1对 1.8×103s-1)和更大的磷光贡献(25%对 8%),这是由于自旋轨道耦合(SOC)更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验