Suppr超能文献

基于先验概率导向的特征编码策略聚类方法的提案。

A proposal of prior probability-oriented clustering in feature encoding strategies.

机构信息

School of System Engineering, Kochi University of Technology, Kami, Kochi, Japan.

出版信息

PLoS One. 2019 Jan 10;14(1):e0210146. doi: 10.1371/journal.pone.0210146. eCollection 2019.

Abstract

Codebook-based feature encodings are a standard framework for image recognition issues. A codebook is usually constructed by clusterings, such as the k-means and the Gaussian Mixture Model (GMM). A codebook size is an important factor to decide the trade-off between recognition performance and computational complexity and a traditional framework has the disadvantage to image recognition issues when a large codebook; the number of unique clusters becomes smaller than a designated codebook size because some clusters converge to close positions. This paper focusses on the disadvantage from a perspective of the distribution of prior probabilities and presents a clustering framework including two objectives that are alternated to the k-means and the GMM. Our approach is first evaluated with synthetic clustering datasets to analyze a difference to traditional clustering. In the experiment section, although our approach alternated to the k-means generates similar results to the k-means results, our approach is able to finely tune clusters for our objective. Our approach alternated to the GMM significantly improves our objective and constructs intuitively appropriate clusters, especially for huge and complicatedly distributed samples. In the experiment on image recognition issues, two state-of-the-art encodings, the Fisher Vector (FV) using the GMM and the Vector of Locally Aggregated Descriptors (VLAD) using the k-means, are evaluated with two publicly available image datasets, the Birds and the Butterflies. For the results of the VLAD with our approach, the recognition performances tend to be worse compared to the original VLAD results. On the other hand, the FV using our approach is able to improve the performance, especially in a larger codebook size.

摘要

基于码本的特征编码是图像识别问题的标准框架。码本通常通过聚类来构建,例如 k-均值和高斯混合模型 (GMM)。码本大小是决定识别性能和计算复杂度之间权衡的一个重要因素,当码本较大时,传统框架对图像识别问题不利;由于某些聚类收敛到接近的位置,因此唯一聚类的数量变得小于指定的码本大小。本文从先验概率分布的角度关注这一缺点,并提出了一种聚类框架,包括交替使用 k-均值和 GMM 的两个目标。我们的方法首先在合成聚类数据集上进行评估,以分析与传统聚类的差异。在实验部分,尽管我们的方法交替使用 k-均值生成的结果与 k-均值的结果相似,但我们的方法能够根据我们的目标精细调整聚类。我们的方法交替使用 GMM 显著提高了我们的目标,并构建了直观合适的聚类,特别是对于庞大而复杂分布的样本。在图像识别问题的实验中,使用两个最先进的编码,即使用 GMM 的 Fisher Vector (FV) 和使用 k-均值的 Vector of Locally Aggregated Descriptors (VLAD),对两个公开可用的图像数据集 Birds 和 Butterflies 进行了评估。对于我们方法的 VLAD 结果,识别性能往往比原始 VLAD 结果差。另一方面,我们的方法使用 FV 能够提高性能,特别是在更大的码本大小下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3790/6328107/0182b214b41f/pone.0210146.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验