Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
Brain Imaging Behav. 2019 Aug;13(4):893-904. doi: 10.1007/s11682-018-9901-5.
In this work, we propose a novel framework to encode the local connectivity patterns of brain, using Fisher vectors (FV), vector of locally aggregated descriptors (VLAD) and bag-of-words (BoW) methods. We first obtain local descriptors, called mesh arc descriptors (MADs) from fMRI data, by forming local meshes around anatomical regions, and estimating their relationship within a neighborhood. Then, we extract a dictionary of relationships, called brain connectivity dictionary by fitting a generative Gaussian mixture model (GMM) to a set of MADs, and selecting codewords at the mean of each component of the mixture. Codewords represent connectivity patterns among anatomical regions. We also encode MADs by VLAD and BoW methods using k-Means clustering. We classify cognitive tasks using the Human Connectome Project (HCP) task fMRI dataset and cognitive states using the Emotional Memory Retrieval (EMR). We train support vector machines (SVMs) using the encoded MADs. Results demonstrate that, FV encoding of MADs can be successfully employed for classification of cognitive tasks, and outperform VLAD and BoW representations. Moreover, we identify the significant Gaussians in mixture models by computing energy of their corresponding FV parts, and analyze their effect on classification accuracy. Finally, we suggest a new method to visualize the codewords of the learned brain connectivity dictionary.
在这项工作中,我们提出了一种新的框架,使用 Fisher 向量(FV)、局部聚合描述符向量(VLAD)和词袋(BoW)方法来编码大脑的局部连接模式。我们首先通过在解剖区域周围形成局部网格,并估计它们在邻域内的关系,从 fMRI 数据中获得局部描述符,称为网格弧描述符(MADs)。然后,我们通过对一组 MADs 拟合生成高斯混合模型(GMM),并选择每个混合分量均值处的码字,来提取一个称为大脑连接字典的关系字典。码字代表解剖区域之间的连接模式。我们还通过 VLAD 和 BoW 方法使用 k-Means 聚类对 MADs 进行编码。我们使用人类连接组计划(HCP)任务 fMRI 数据集对认知任务进行分类,并使用情绪记忆检索(EMR)对认知状态进行分类。我们使用编码后的 MADs 训练支持向量机(SVM)。结果表明,MADs 的 FV 编码可成功用于认知任务的分类,并且优于 VLAD 和 BoW 表示。此外,我们通过计算它们相应 FV 部分的能量来识别混合模型中的显著高斯,并分析它们对分类精度的影响。最后,我们提出了一种新的方法来可视化学习到的大脑连接字典的码字。