Salameh Jack P, Cauet Sebastien, Etien Erik, Sakout Anas, Rambault Laurent
LIAS-Université de Poitiers, 86000 Poitiers, France; LASIE-CNRS-Université de La Rochelle, 17000 La Rochelle, France.
LIAS-Université de Poitiers, 86000 Poitiers, France.
ISA Trans. 2019 Jun;89:20-30. doi: 10.1016/j.isatra.2018.12.019. Epub 2018 Dec 17.
Modern control applications justify the need for improved techniques capable of coping with the non-stationary nature of measured signals while being able to monitor systems in real-time. Empirical Mode Decomposition (EMD) is known for its efficiency in time domain analysis of multi-component signals through Intrinsic Mode Functions (IMFs) extraction. Recent years witnessed the introduction of Sliding Window EMD (SWEMD) capable of analyzing signals in real time applications. However, complex signals require several sifting iterations while a rather increased number of IMFs might result in impracticality for on-line applications. This paper introduces a new modified faster SWEMD capable of extracting harmonics from non-stationary signals in real-time operation. The method uses the traditional EMD properties in the first pass for a small number of sifting processes. In addition, a new section is added to the algorithm based on inflection point tracking of the residue derivative from the first pass is added, in order to track low frequency waves and render the analysis faster. The method is validated for non-stationary signals with and without added colored noise and applied on measured turbine side angular velocity for harmonic extraction in wind turbines as an application. The proposed method may well be used for fault detection and disturbance rejection in mechanical systems.
现代控制应用证明了需要改进技术,这些技术要能够应对测量信号的非平稳特性,同时能够实时监测系统。经验模态分解(EMD)因其通过本征模态函数(IMF)提取在多分量信号时域分析中的效率而闻名。近年来出现了滑动窗口EMD(SWEMD),它能够在实时应用中分析信号。然而,复杂信号需要多次筛选迭代,而相当数量的IMF可能导致在线应用不切实际。本文介绍了一种新的改进的快速SWEMD,它能够在实时操作中从非平稳信号中提取谐波。该方法在第一遍使用传统EMD属性进行少量筛选过程。此外,基于第一遍残差导数的拐点跟踪向算法中添加了一个新部分,以便跟踪低频波并使分析更快。该方法针对有无加色噪声的非平稳信号进行了验证,并应用于测量的风力涡轮机涡轮侧角速度以进行谐波提取作为一个应用实例。所提出的方法很可能用于机械系统的故障检测和干扰抑制。