Suppr超能文献

骨骼肌挫伤后大鼠伤口愈合相关基因的时间表达用于伤口年龄估计:多变量统计模型分析

Temporal expression of wound healing-related genes inform wound age estimation in rats after a skeletal muscle contusion: a multivariate statistical model analysis.

作者信息

Du Qiu-Xiang, Li Na, Dang Li-Hong, Dong Ta-Na, Lu Han-Lin, Shi Fu-Xia, Jin Qian-Qian, Jie Cao, Sun Jun-Hong

机构信息

School of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan, 030001, Shanxi, People's Republic of China.

出版信息

Int J Legal Med. 2020 Jan;134(1):273-282. doi: 10.1007/s00414-018-01990-2. Epub 2019 Jan 11.

Abstract

Although many time-dependent parameters involved in wound healing have been exhaustively investigated, establishing an objective and reliable means for estimating wound age remains a challenge. In this study, 78 Sprague-Dawley rats were divided randomly into a control group and contusion groups at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h post-injury (n = 6 per group). The expression of 35 wound healing-related genes was explored in contused skeletal muscle by real-time polymerase chain reaction. Differences between the groups were assessed by partial least squares discriminant analysis (PLS-DA). The results show that the samples were classified into three groups by wound age (4-12, 16-24, and 28-48 h). A Fisher discriminant analysis model of 14 selected genes was constructed, and 94.9% cross-validated grouped cases were correctly classified. A PLS regression analysis using 14 genes showed reasonable internal predictive validity, with a root mean squared error of cross-validation of approximately 8 h. To examine whether the prediction models were capable of analyzing new (ungrouped) cases, an external validation was carried out using the expression data from an additional 30 rats. Approximately 76.7% of ungrouped cases were correctly classified, which was a lower proportion than that for cross-validation. Similarly, the prediction results of the PLS model showed lower relatively external predictive validity (root mean squared error of prediction = 11 h) than internal predictive validity. Although the prediction results were less accurate than expected, the gene expression modeling and multivariate analyses showed great potential for estimating injury time. These multivariate methods may be valuable when devising future wound time estimation strategies.

摘要

尽管伤口愈合过程中涉及的许多时间依赖性参数已得到详尽研究,但建立一种客观可靠的方法来估计伤口年龄仍是一项挑战。在本研究中,78只Sprague-Dawley大鼠在受伤后4、8、12、16、20、24、28、32、36、40、44和48小时被随机分为对照组和挫伤组(每组n = 6)。通过实时聚合酶链反应探讨了挫伤骨骼肌中35个与伤口愈合相关基因的表达。通过偏最小二乘判别分析(PLS-DA)评估组间差异。结果表明,样本按伤口年龄分为三组(4 - 12小时、16 - 24小时和28 - 48小时)。构建了一个由14个选定基因组成的Fisher判别分析模型,94.9%的交叉验证分组病例被正确分类。使用14个基因进行的PLS回归分析显示出合理的内部预测效度,交叉验证的均方根误差约为8小时。为了检验预测模型是否能够分析新的(未分组的)病例,使用另外30只大鼠的表达数据进行了外部验证。约76.7%的未分组病例被正确分类,这一比例低于交叉验证的比例。同样,PLS模型的预测结果显示其相对外部预测效度(预测均方根误差 = 11小时)低于内部预测效度。尽管预测结果不如预期准确,但基因表达建模和多变量分析显示出在估计损伤时间方面的巨大潜力。这些多变量方法在设计未来伤口时间估计策略时可能具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验