Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland.
Institute for Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , P.O. Box 3640, 76021 Karlsruhe , Germany.
J Am Chem Soc. 2019 Feb 6;141(5):2104-2110. doi: 10.1021/jacs.8b11797. Epub 2019 Jan 25.
We introduce a design principle to stabilize helically chiral structures from an achiral tetrasubstituted [2.2]paracyclophane by integrating it into a macrocycle. The [2.2]paracyclophane introduces a three-dimensional perturbation into a nearly planar macrocyclic oligothiophene. The resulting helical structure is stabilized by two bulky substituents installed on the [2.2]paracyclophane unit. The increased enantiomerization barrier enabled the separation of both enantiomers. The synthesis of the target helical macrocycle 1 involves a sequence of halogenation and cross-coupling steps and a high-dilution strategy to close the macrocycle. Substituents tuning the energy of the enantiomerization process can be introduced in the last steps of the synthesis. The chiral target compound 1 was fully characterized by NMR spectroscopy and mass spectrometry. The absolute configurations of the isolated enantiomers were assigned by comparing the data of circular dichroism spectroscopy with TD-DFT calculations. The enantiomerization dynamics was studied by dynamic HPLC and variable-temperature 2D exchange spectroscopy and supported by quantum-chemical calculations.
我们介绍了一种设计原则,通过将手性四取代[2.2]对环芳烷整合到大环中,来稳定螺旋手性结构。[2.2]对环芳烷在手性接近平面的大环齐聚噻吩中引入了三维扰动。安装在[2.2]对环芳烷单元上的两个大取代基稳定了所得到的螺旋结构。增加的对映体异构化势垒使两种对映体得以分离。目标螺旋大环 1 的合成涉及一系列卤化和交叉偶联步骤以及采用高稀释策略来闭环。可以在合成的最后步骤中引入调节对映体异构化过程能量的取代基。通过 NMR 光谱和质谱对手性目标化合物 1 进行了全面表征。通过将圆二色性光谱数据与 TD-DFT 计算进行比较,确定了分离对映体的绝对构型。通过动态 HPLC 和变温二维交换光谱研究了对映体异构化动力学,并通过量子化学计算得到了支持。