Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
Phys Chem Chem Phys. 2019 Feb 13;21(7):3683-3694. doi: 10.1039/c8cp06527f.
The effective fragment potential (EFP) method for the efficient inclusion of solvation effects is combined with the algebraic diagrammatic construction (ADC) scheme for the second- and third-order polarisation propagator. The accuracy of these newly developed EFP-ADC(2) and EFP-ADC(3) methods is tested with respect to supermolecular ADC calculations for a selected set of small solute·solvent complexes. The EFP model for solvation introduces only marginal errors in the excitation energies and oscillator strengths of singlet as well as triplet states, which are strictly localized on the chromophore, significantly below the intrinsic errors of the parent ADC(2) and ADC(3) methods. It is only when delocalization of electron density on the solvent molecules occurs that the error in the excitation energies increases, a well-known behavior of environment models in general. Overall, EFP-ADC schemes prove to be reliable computational approaches to simulate electronic absorption spectra in solution.
有效片段势能 (EFP) 方法可高效纳入溶剂化效应,与二阶和三阶极化传播子的代数图论构造 (ADC) 方案相结合。这些新开发的 EFP-ADC(2) 和 EFP-ADC(3) 方法的准确性通过对一组选定的小分子-溶剂复合物的超分子 ADC 计算进行了测试。溶剂化的 EFP 模型仅在激发能和单重态以及三重态的振子强度方面引入了微小误差,这些误差严格局限于发色团上,明显低于原始 ADC(2)和 ADC(3)方法的固有误差。只有当电子密度在溶剂分子上发生离域时,激发能的误差才会增加,这是一般环境模型的一种众所周知的行为。总体而言,EFP-ADC 方案被证明是可靠的计算方法,可用于模拟溶液中的电子吸收光谱。