Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany.
Phys Chem Chem Phys. 2019 Jan 23;21(4):1904-1911. doi: 10.1039/c8cp05592k.
BNC heteronanotubes are promising materials for the design of nanoscale thermoelectric devices. In particular, the structural BN doping pattern can be exploited to control the electrical and thermal transport properties of BNC nanostructures. We here address the thermoelectric transport properties of (6,6)-BNC heteronanotubes with helical and horizontal BN doping patterns. For this, we use a density functional tight-binding method combined with the Green's function technique. Our results show that the electron transmission is reduced and the electronic bandgap increased as a function of the BN concentration for different doping distribution patterns, so that (6,6)-BNC heteronanotubes become semiconducting with a tunable bandgap. The thermal conductance of helical (6,6)-BNC heteronanotubes, which is dominated by phonons, is weakly dependent on BN concentration in the range of 30-80%. Also, the Seebeck coefficient is enhanced by increasing the concentration of helical BN strips. In particular, helical (6,6)-BNC heteronanotubes with a high BN concentration (>20%) display a larger figure of merit compared to other doping distributions and, for a concentration of 50%, reach values up to 2.3 times and 3.4 times the corresponding values of a CNT at 300 K and 800 K, respectively. Our study yields new insights into the parameters tuning the thermoelectric efficiency and thus provides a starting point for designing thermoelectric devices based on BNC nanostructures.
BNC 异质纳米管是设计纳米尺度热电设备的有前途的材料。特别是,结构 BN 掺杂模式可用于控制 BNC 纳米结构的电输运和热输运特性。我们在此研究了具有螺旋和水平 BN 掺杂模式的(6,6)-BNC 异质纳米管的热电输运性质。为此,我们使用密度泛函紧束缚方法结合格林函数技术。我们的结果表明,随着 BN 浓度的增加,电子输运能力降低,电子能带隙增加,对于不同的掺杂分布模式,(6,6)-BNC 异质纳米管成为具有可调带隙的半导体。由声子主导的螺旋(6,6)-BNC 异质纳米管的热导与 BN 浓度在 30-80%的范围内弱相关。此外,通过增加螺旋 BN 条带的浓度,可以增强 Seebeck 系数。特别是,具有高 BN 浓度(>20%)的螺旋(6,6)-BNC 异质纳米管与其他掺杂分布相比显示出更大的品质因数,对于 50%的浓度,在 300 K 和 800 K 下分别达到对应 CNT 值的 2.3 倍和 3.4 倍。我们的研究深入了解了参数调节热电效率的情况,从而为基于 BNC 纳米结构的热电设备设计提供了起点。