Lee Hee Young, Youk Hyun, Kim Oh Hyun, Kong Joon Seok, Kang Chan Young, Sung Sil, Jang Ji Yun, Kim Ho Jung, Kim Sang Chul, Lee Kang Hyun
a Department of Emergency Medicine, Wonju College of Medicine , Yonsei University , Wonju , Korea.
b Center of Biomedical Data Science, Wonju College of Medicine , Yonsei University , Wonju , Korea.
Traffic Inj Prev. 2018;19(sup2):S48-S54. doi: 10.1080/15389588.2018.1519554. Epub 2019 Jan 11.
We aimed to analyze factors affecting the severity of mild whiplash-associated disorders (WADs) and to develop a predictive model to evaluate the presence of mild WAD in minor motor vehicle crashes (MVCs).
We used the Korean In-Depth Accident Study (KIDAS) database, which collects data from 4 regional emergency centers, to obtain data from 2011 to 2017. The Collision Deformation Classification code was obtained as vehicle's damage information, and Abbreviated Injury Scale (AIS), Maximum Abbreviated Injury Scale (MAIS), and Injury Severity Score (ISS) were used as occupant's injury information. The degree of WAD was determined using the Quebec Task Force (QTF) classification, comprised of 5 stages (QTF 0-4), depending on the occupant's pain and the physician's findings. QTF 1 was defined as mild WAD, and we used QTF 0 to define those who were uninjured. For KIDAS data between 2011 and 2016, a logistic regression model was used to identify factors affecting the occurrence of mild WAD and a predictive model was constructed. Internal validity was estimated using random bootstrapping, and external validity was evaluated by applying 2017 KIDAS data. Of the 2,629 occupants in the KIDAS database from 2011 to 2016, after applying several exclusion conditions, 459 occupants were used to develop the predictive model. The external validity of the derived predictive model was assessed using the 13 MVC occupants from the 2017 KIDAS database meeting our inclusion criteria. Among the 137 MVC occupants from the 2017 KIDAS database for analysis of the external validity of the derived predictive model, the predictive model was verified for 13 MVC occupants.
Logistic regression analysis was used to derive a predictive model based on sex, age, body mass index, type of vehicle, belt status, seating row, crush type, and crush extent. This predictive model had an explanatory power of 65.5% to determine an actual QTF of 0 and 1 (c-statistics: 0.655). As a result of the external validity analysis of the predictive model using data from the 2017 KIDAS database (N = 13), sensitivity, specificity, and accuracy were 0.500, 0.857, and 0.692, respectively.
Using the predictive model, the results of the external validity analysis showed low sensitivity but high specificity. This predictive model provided meaningful results, with a high success rate for determining no injury to an occupant. Given our study results, future research is needed to create a more accurate predictive model that includes relevant technical and sociological factors.
我们旨在分析影响轻度挥鞭样损伤相关疾病(WADs)严重程度的因素,并开发一种预测模型,以评估在轻微机动车碰撞事故(MVCs)中轻度WAD的存在情况。
我们使用了韩国深度事故研究(KIDAS)数据库,该数据库收集了来自4个地区急救中心的数据,以获取2011年至2017年的数据。碰撞变形分类代码作为车辆的损坏信息获取,简略损伤量表(AIS)、最大简略损伤量表(MAIS)和损伤严重程度评分(ISS)用作乘员的损伤信息。WAD的程度根据魁北克工作组(QTF)分类确定,分为5个阶段(QTF 0 - 4),具体取决于乘员的疼痛情况和医生的检查结果。QTF 1被定义为轻度WAD,我们使用QTF 0来定义未受伤者。对于2011年至2016年的KIDAS数据,使用逻辑回归模型来识别影响轻度WAD发生的因素并构建预测模型。使用随机自抽样估计内部效度,并通过应用2017年KIDAS数据评估外部效度。在2011年至2016年KIDAS数据库中的2629名乘员中,应用了多个排除条件后,459名乘员被用于开发预测模型。使用来自2017年KIDAS数据库且符合我们纳入标准的13名MVC乘员评估所推导预测模型的外部效度。在来自2017年KIDAS数据库用于分析所推导预测模型外部效度的137名MVC乘员中,该预测模型在13名MVC乘员中得到验证。
使用逻辑回归分析基于性别、年龄、体重指数、车辆类型、安全带使用情况、座位排数、碰撞类型和碰撞程度推导预测模型。该预测模型在确定实际QTF为0和1时具有65.5%的解释力(c统计量:0.655)。使用2017年KIDAS数据库(N = 13)的数据对预测模型进行外部效度分析的结果显示,敏感性、特异性和准确性分别为0.500、0.857和0.692。
使用该预测模型,外部效度分析结果显示敏感性低但特异性高。该预测模型提供了有意义的数据,在确定乘员未受伤方面成功率较高。鉴于我们的研究结果,未来需要开展研究以创建一个更准确的预测模型,纳入相关技术和社会学因素。