Estonian Genome Center, Institute of Genomics, University of Tartu, 23b Riia Street, 51010, Tartu, Estonia.
Institute of Computer Science, University of Tartu, Juhan Liivi 2, 50409, Tartu, Estonia.
BMC Bioinformatics. 2019 Jan 11;20(1):22. doi: 10.1186/s12859-019-2600-4.
Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study.
We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester.
We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.
全基因组关联研究(GWAS)中有趣区域的选择通常通过曼哈顿图的目测来完成。但是,当有成千上万种不同的表型时,这种方法就不再可行了。因此,我们需要能够自动检测与经验丰富的研究人员认为值得进一步研究的峰值相对应的基因组区域的工具。
我们开发了 Manhattan Harvester,这是一种用于从 GWAS 汇总文件中“提取峰”并计算各种峰特征参数的工具。我们介绍了所使用的算法和创建通用质量评分的模型,该模型类似于人类研究人员的评分方式。我们的工具 Cropper 利用图形界面来检查、裁剪和子区域选择曼哈顿图区域。Cropper 用于验证和可视化 Manhattan Harvester 检测到的区域。
我们得出结论,我们的工具填补了当前在批量模式下自动筛选大量 GWAS 输出文件的空白。Manhattan Harvester 通过各种参数检测和量化有趣的区域。Cropper 提供了用于深入检查区域的图形工具。这些工具是开源的,并且可以免费使用。