Suppr超能文献

RNase H1 通过线粒体 DNA 的反义转录区域促进复制叉的前进。

RNase H1 promotes replication fork progression through oppositely transcribed regions of mitochondrial DNA.

机构信息

From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland.

From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland,

出版信息

J Biol Chem. 2019 Mar 22;294(12):4331-4344. doi: 10.1074/jbc.RA118.007015. Epub 2019 Jan 11.

Abstract

Mitochondrial DNA (mtDNA) replication uses a simple core machinery similar to those of bacterial viruses and plasmids, but its components are challenging to unravel. Here, we found that, as in mammals, the single gene for RNase H1 () has alternative translational start sites, resulting in two polypeptides, targeted to either mitochondria or the nucleus. RNAi-mediated knockdown did not influence growth or viability of S2 cells, but compromised mtDNA integrity and copy number. knockdown in intact flies also produced a phenotype of impaired mitochondrial function, characterized by respiratory chain deficiency, locomotor dysfunction, and decreased lifespan. Its overexpression in S2 cells resulted in cell lethality after 5-9 days, attributable to the nuclearly localized isoform. knockdown and overexpression produced opposite effects on mtDNA replication intermediates. The most pronounced effects were seen in genome regions beyond the major replication pauses where the replication fork needs to progress through a gene cluster that is transcribed in the opposite direction. RNase H1 deficiency led to an accumulation of replication intermediates in these zones, abundant mtDNA molecules joined by four-way junctions, and species consistent with fork regression from the origin. These findings indicate replication stalling due to the presence of unprocessed RNA/DNA heteroduplexes, potentially leading to the degradation of collapsed forks or to replication restart by a mechanism involving strand invasion. Both mitochondrial RNA and DNA syntheses were affected by knockdown, suggesting that RNase H1 also plays a role in integrating or coregulating these processes in mitochondria.

摘要

线粒体 DNA(mtDNA)复制使用与细菌病毒和质粒相似的简单核心机制,但它的组成部分难以解析。在这里,我们发现,与哺乳动物一样,单一的 RNase H1()基因具有替代的翻译起始位点,导致产生两种靶向线粒体或细胞核的多肽。RNAi 介导的 基因敲低不会影响 S2 细胞的生长或活力,但会损害 mtDNA 的完整性和拷贝数。完整果蝇中的 基因敲低也会产生线粒体功能受损的表型,其特征是呼吸链缺陷、运动功能障碍和寿命缩短。其在 S2 细胞中的过表达会导致细胞在 5-9 天后死亡,这归因于核定位的同工型。 基因敲低和过表达对 mtDNA 复制中间体产生相反的影响。在主要复制暂停之外的基因组区域中观察到最明显的影响,在这些区域中,复制叉需要通过以相反方向转录的基因簇进行前进,这需要克服未加工的 RNA/DNA 异源双链体的阻碍。RNase H1 缺乏会导致这些区域中复制中间体的积累,大量 mtDNA 分子通过四链结连接,并且物种与从原点倒退的复制叉一致。这些发现表明,由于存在未加工的 RNA/DNA 异源双链体,复制会停滞,这可能导致崩溃的复制叉降解,或者通过涉及链入侵的机制进行复制重新启动。 基因敲低都会影响线粒体 RNA 和 DNA 的合成,这表明 RNase H1 还在整合或共同调节线粒体中的这些过程中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74ca/6433063/40021b664673/zbc0101902040001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验